分析 (1)$\overrightarrow{AB}$=(-2,2,1),$\overrightarrow{CD}$=(-2,m-1,n-1),利用AB∥CD,即可求實(shí)數(shù)m,n的值;
(2)若m+n=1,且直線AB和CD所成角的余弦值為$\frac{1}{3}$,即$\frac{|1+2m+n|}{3\sqrt{4+(m-1)^{2}+(n-1)^{2}}}$=$\frac{1}{3}$,即可求實(shí)數(shù)m的值.
解答 解:(1)$\overrightarrow{AB}$=(-2,2,1),$\overrightarrow{CD}$=(-2,m-1,n-1),
∵AB∥CD,
∴m-1=2,n-1=1,
∴m=3,n=2;
(2)由題意,$\frac{|1+2m+n|}{3\sqrt{4+(m-1)^{2}+(n-1)^{2}}}$=$\frac{1}{3}$,m+n=1,
∴m=3$±2\sqrt{2}$.
點(diǎn)評 本題考查空間角的計(jì)算,考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x<2,則x<1 | B. | 若x≤2,則x≤1 | C. | 若x≤1,則x≤2 | D. | 若x<1,則x<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤-2或a=1 | B. | a≤-2或1≤a≤2 | C. | a≥1 | D. | -2≤a≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com