10.函數(shù)y=2sinx在點$x=\frac{π}{3}$處的導數(shù)是( 。
A.-1B.1C.0D.2

分析 利用導數(shù)的運算法則、三角函數(shù)求值即可得出.

解答 解:f′(x)=2cosx,
${f}^{′}(\frac{π}{3})$=2cos$\frac{π}{3}$=1.
故選:B.

點評 本題考查了導數(shù)的運算法則、三角函數(shù)求值,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.定義$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$為n個正數(shù)p1,p2,…,pn的“均倒數(shù)”.若已知正數(shù)數(shù)列{an}的前n項的“均倒數(shù)”為$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,則$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+$\frac{1}{_{3}_{4}}$+…+$\frac{1}{_{2015}_{2016}}$=( 。
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{1}{2015}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.用1,2,3,4,5這5個數(shù)字,組成無重復數(shù)字的三位數(shù),其中奇數(shù)有( 。
A.12種B.24種C.36種D.48種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在長方體ABCDA1B1C1D1的六個表面與六個對角面(面AA1C1C、面ABC1D、面ADC1B1、面BB1D1D、面A1BCD1及面A1B1CD)所在的平面中,與棱AA1平行的平面共有3個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在復平面內(nèi),復數(shù)z的對應點為(1,-1),則z2=( 。
A.$\sqrt{2}$B.$-\sqrt{2}$C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-3x+4
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求函數(shù)y=f(x)在[0,2]的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知x+2y+3z=6,則2x+4y+8z的最小值為( 。
A.3$\root{3}{6}$B.2$\sqrt{2}$C.12D.12$\root{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.用0,1,2,3,4,5這6個數(shù),能組成幾個沒有重復數(shù)字的四位偶數(shù)(  )
A.18B.156C.192D.360

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{alnx}{x}$,g(x)=b(x+1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的曲線與函數(shù)g(x)的曲線有兩個交點,設兩個交點的橫坐標分別為x1,x2,證明:$\frac{{{x_1}+{x_2}}}{a}g({x_1}+{x_2})>2$.

查看答案和解析>>

同步練習冊答案