【題目】已知橢圓()的離心率為,短軸的一個端點(diǎn)為.過橢圓左頂點(diǎn)的直線與橢圓的另一交點(diǎn)為.
(1)求橢圓的方程;
(2)若與直線交于點(diǎn),求的值;
(3)若,求直線的傾斜角.
【答案】(1);(2);(3)或.
【解析】試題分析:(1)根據(jù)條件可得,,再結(jié)合條件,計(jì)算得到,和,求得橢圓的標(biāo)準(zhǔn)方程;(2)首先設(shè),根據(jù)點(diǎn)的坐標(biāo)求出直線的方程,并計(jì)算得到點(diǎn)的坐標(biāo),并表示,最后根據(jù)點(diǎn)在橢圓上,滿足橢圓方程,計(jì)算得到常數(shù);(3)設(shè)直線方程與橢圓方程聯(lián)立,根據(jù)弦長公式,解得直線的斜率,最后得到直線的傾斜角.
試題解析:(1)∵
∴
∴橢圓的方程為
(2)由(1)可知點(diǎn),設(shè),則
令,解得,既
∴
又∵在橢圓上,則,
∴
(3)當(dāng)直線的斜率不存在時,不符合題意;當(dāng)直線的斜率存在時,設(shè)其為,則
由可得,
由于,則設(shè)可得, ,
∴
∴解得
∴直線的傾斜角為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)求函數(shù)的極值;
(2)若函數(shù)在區(qū)間內(nèi)有兩個零點(diǎn),求的取值范圍;
(3)求證:當(dāng)時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同.隨機(jī)有放回地抽取3次,每次抽取1張,將抽取的卡片上的數(shù)字依次記為a,b,c.求:
(1)“抽取的卡片上的數(shù)字滿足a+b=c”的概率;
(2)“抽取的卡片上的數(shù)字a,b,c不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,給當(dāng)?shù)厝嗣裨斐闪司薮蟮呢?cái)產(chǎn)損失,適逢暑假,小張調(diào)查了當(dāng)?shù)啬承^(qū)的100戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成, , , , 五組,并作出如下頻率分布直方圖(圖1):
(Ⅰ)臺風(fēng)后居委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶居民捐款情況如右下表格,在圖2表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機(jī)抽樣方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經(jīng)濟(jì)損失超過4000元的人數(shù)為. 若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.
附:臨界值表
0.10 | 0.05 | 0.025 | |
| 2.706 | 3.841 | 5.024 |
隨機(jī)量變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是__________.(寫出所有正確命題的序號)
①已知,“且”是“”的充要條件;
②已知平面向量,“且”是“”的必要不充分條件;
③已知,“”是“”的充分不必要條件;
④命題:“,使且”的否定為:“,都有且”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下列表:
喜愛打籃球 | 不喜愛打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
已知在全班50人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上表補(bǔ)充完整(不用寫計(jì)算過程);
(2)能否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一張半徑為4的圓形紙片的圓心為, 是圓內(nèi)一個定點(diǎn),且, 是圓上一個動點(diǎn),把紙片折疊使得與重合,然后抹平紙片,折痕為,設(shè)與半徑的交點(diǎn)為,當(dāng)在圓上運(yùn)動時,則點(diǎn)的軌跡為曲線,以所在直線為軸, 的中垂線為軸建立平面直角坐標(biāo)系,如圖.
(1)求曲線的方程;
(2)曲線與軸的交點(diǎn)為, (在左側(cè)),與軸不重合的動直線過點(diǎn)且與交于、兩點(diǎn)(其中在軸上方),設(shè)直線、交于點(diǎn),求證:動點(diǎn)恒在定直線上,并求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人做射擊游戲,甲、乙射擊擊中與否是相互獨(dú)立事件.規(guī)則如下:若射擊一次擊中,則原射擊人繼續(xù)射擊;若射擊一次不中,就由對方接替射擊.已知甲、乙二人射擊一次擊中的概率均為,且第一次由甲開始射擊.①求前3次射擊中甲恰好擊中2次的概率____________;②求第4次由甲射擊的概率________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是平行四邊形, , , , ,平面底面,直線與底面所成的角為.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com