在正三棱柱中,所有棱的長度都是2,邊的中點(diǎn),問:在側(cè)棱上是否存在點(diǎn),使得異面直線所成的角等于
在側(cè)棱上不存在點(diǎn),使得異面直線所成的角等于
點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系

因?yàn)樗欣忾L都等于2,所以
假設(shè)在側(cè)棱上存在點(diǎn),使得異面直線所成的角等于,
可設(shè),

于是,
因?yàn)楫惷嬷本所成的角等于
所以的夾角是
,
所以,解得,但由于,
所以點(diǎn)不在側(cè)棱上,
即在側(cè)棱上不存在點(diǎn),使得異面直線所成的角等于
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正四棱柱中,,點(diǎn)上且
(1)證明:平面;
(2)求二面角的余弦值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,,是平面內(nèi)的三點(diǎn),設(shè)平面的法向量,則                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知棱長為1的正方體ABCD-A1B1C1D1,求平面A1BC1與平面ABCD所成的二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖直角梯形OABC中,,SO=1,以O(shè)C、OA、OS分別為x軸、y軸、z軸建立直角坐標(biāo)系O-xyz.
(Ⅰ)求的大。ㄓ梅慈呛瘮(shù)表示);
(Ⅱ)設(shè)

②OA與平面SBC的夾角(用反三角函數(shù)表示);
③O到平面SBC的距離.
(Ⅲ)設(shè)
           
②異面直線SC、OB的距離為              .
(注:(Ⅲ)只要求寫出答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,是正三角形,,D的中點(diǎn),二面角為120,,.取AC的中點(diǎn)O為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示,BDz軸于點(diǎn)E.
(I)求B、D、P三點(diǎn)的坐標(biāo);
(II)求異面直線ABPC所成的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖3,直三棱柱中,底面是等腰直角三角形,,側(cè)棱分別是的中點(diǎn),點(diǎn)在平面上的射影是的重心,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線平面,直線平面,給出下列命題,其中正確的是(   )
                  ②
                   ④
A.②④B.②③④C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,是平面內(nèi)的三點(diǎn),設(shè)平面的法向量,則________________。

查看答案和解析>>

同步練習(xí)冊答案