已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求實數(shù)a的取值范圍;
(2)對于給定的實數(shù)a,有一個最小的負數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立,則當a為何值時,M(a)最小,并求出M(a)的最小值.
分析:(1)先將f(
x1+x2
2
)<
f(x1)+f(x2)
2
用函數(shù)f(x)的表達式表示出來,再進行化簡得:-
a
4
(x1-x2)2<0
,由此式即可求得實數(shù)a的取值范圍;
(2)本小題可以從a的范圍入手,考慮0<a<2與a≥2兩種情況,結合二次的象與性質,綜合運用分類討論思想與數(shù)形結合思想求解.
解答:解:(1)∵f(
x1+x2
2
)-
f(x1)+f(x2)
2

=a(
x1+x2
2
)2+b(
x1+x2
2
)+c-
ax12+bx1+c+ax22+bx2+c
2

=-
a
4
(x1-x2)2<0
,
∵x1≠x2,∴a>0.∴實數(shù)a的取值范圍為(0,+∞).
(2)∵f(x)=ax2+4x-2=a(x+
2
a
)2-2-
4
a

顯然f(0)=-2,對稱軸x=-
2
a
<0

①當-2-
4
a
<-4
,即0<a<2時,M(a)∈(-
2
a
,0)
,且f[M(a)]=-4.
令ax2+4x-2=-4,解得x=
-2±
4-2a
a
,
此時M(a)取較大的根,即M(a)=
-2+
4-2a
a
=
-2
4-2a
+2
,
∵0<a<2,∴M(a)=
-2
4-2a
+2
>-1

②當-2-
4
a
≥-4
,即a≥2時,M(a)<-
2
a
,且f[M(a)]=4.
令ax2+4x-2=4,解得x=
-2±
4+6a
a
,
此時M(a)取較小的根,即M(a)=
-2-
4+6a
a
=
-6
4+6a
-2
,
∵a≥2,∴M(a)=
-6
4+6a
-2
≥-3
.當且僅當a=2時,取等號.
∵-3<-1∴當a=2時,M(a)取得最小值-3.
點評:本小題主要考查函數(shù)單調性的應用、函數(shù)奇偶性的應用、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案