數(shù)列為等差數(shù)列,     

A.12     B.25     C.16     D.15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

21、設(shè)m>3,對于有窮數(shù)列{an}(n=1,2,…,m)),令bk為a1,a2,…ak中的最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.?dāng)?shù)列{bn}中不相等項的個數(shù)稱為{an}的“創(chuàng)新階數(shù)”.例如數(shù)列2,1,3,7,5的創(chuàng)新數(shù)列為2,2,3,7,7,創(chuàng)新階數(shù)為3.考察自然數(shù)1,2,…m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{Cn}.
(1)若m=5,寫出創(chuàng)新數(shù)列為3,4,4,5,5的所有數(shù)列{Cn};
(2)是否存在數(shù)列{Cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出所有的數(shù){Cn},若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a2=3,其前n項和Sn滿足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(1)求證:數(shù)列為等差數(shù)列,并求的通項公式;
(2)bn=2n•an,求數(shù)列{bn}的前n項和Tn
(3)cn=4n+(-1)n-1λ•2a(λ為非零整數(shù),n∈N*),試確定λ的值,使得數(shù)列{cn}是遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:公差不為0的等差數(shù)列的通項可以表示為關(guān)于n的一次函數(shù)形式,反之通項是關(guān)于n的一次函數(shù)形式的數(shù)列為等差數(shù)列為真,現(xiàn)有正項數(shù)列{an}的前n項和是Sn,若{an}和{
Sn
}都是等差數(shù)列,且公差相等,則數(shù)列{an}的一個通項公式為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,Sn
1
2
an2和an的等差中項
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1
;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式2Sn-4200>
a
2
n
2
恒成立,試問:這樣的正整數(shù)m共有多少個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列a1,a2,…,ak,ak+1,ak+2,…,a2k,a2k+1…而言,若a1,a2,…,ak是以d1為公差的等差數(shù)列,ak,ak+1,ak+2,…,a2k是以d2為公差的等差數(shù)列,依此類推,我們就稱該數(shù)列為等差數(shù)列接龍,已知a1=1,d1=2,k=5,d2=3,d3=4,d4=5,則a18等于
1
1

查看答案和解析>>

同步練習(xí)冊答案