【題目】為了測量山頂M的海拔高度,飛機(jī)沿水平方向在A,B兩點(diǎn)進(jìn)行測量,A,B,M在同一個鉛垂面內(nèi)(如圖).能夠測量的數(shù)據(jù)有俯角、飛機(jī)的高度和A,B兩點(diǎn)間的距離.請你設(shè)計(jì)一個方案,包括:
(1)指出需要測量的數(shù)據(jù)(用字母表示,并在圖中標(biāo)出);
(2)用文字和公式寫出計(jì)算山頂M海拔高度的步驟.

【答案】
(1)解:需測量的數(shù)據(jù)有:A,B點(diǎn)到M點(diǎn)的俯角α,β,飛機(jī)的高度h,A,B兩點(diǎn)的距離a.
(2)解:過點(diǎn)M作AB的垂線,垂足為N,

第一步,在△ABM中,計(jì)算AM.由正弦定理得

第二步,在△AMN中,計(jì)算MN.由銳角三角函數(shù)定義得MN=AMsinα

第三步,計(jì)算山頂M海拔高度:h﹣MN.


【解析】(1)A,B點(diǎn)到M點(diǎn)的俯角α,β,飛機(jī)的高度h,A,B兩點(diǎn)的距離a,畫出圖形.(2)過點(diǎn)M作AB的垂線,垂足為N,第一步,在△ABM中,計(jì)算AM.第二步,在△AMN中,計(jì)算MN.第三步,計(jì)算山頂M海拔高度:h﹣MN

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為(
A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正六邊形ABCDEF中的一半圖形ABCD繞AD翻折到AB1C1D,使得∠B1AF=60°.G是BF與AD的交點(diǎn).
(Ⅰ)求證:平面ADEF⊥平面B1FG;
(Ⅱ)求直線AB1與平面ADEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間四邊形ABCD的對角線AC=10,BD=6,M、N分別為AB、CD的中點(diǎn),MN=7,則異面直線AC和BD所成的角等于(
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 中,橢圓 的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為F1(﹣1,0),離心率

(1)求橢圓G 的標(biāo)準(zhǔn)方程;

(2)已知直線 與橢圓 交于 兩點(diǎn),直線 與橢圓 交于 兩點(diǎn),且 ,如圖所示.

①證明:

②求四邊形 的面積 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中, 已知定圓,動圓過點(diǎn)且與圓相切,記動圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)是曲線上兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為 (異于點(diǎn)),若直線分別交軸于點(diǎn),證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對稱,且f(x)=x2+x.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點(diǎn)為,其左頂點(diǎn)在圓上.

Ⅰ)求橢圓的方程;

直線交橢圓兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),且直線軸的交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在多面體中,是邊長為2的等邊三角形,的中點(diǎn),

1若平面平面,證明:;

2求證:;

3,求點(diǎn)到平面的距離

查看答案和解析>>

同步練習(xí)冊答案