的導數(shù)滿足,其中

求曲線在點處的切線方程;

,求函數(shù)的極值.

 

【答案】

(I)

(II)函數(shù)處取得極小值處取得極大值

【解析】

試題分析:(I)因

由已知

又令由已知因此解得因此

又因為故曲線處的切線方程為

(II)由(I)知,從而有

上為減函數(shù);

在(0,3)上為增函數(shù);

時,上為減函數(shù);

從而函數(shù)處取得極小值處取得極大值

考點:導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的極值。

點評:典型題,在給定區(qū)間,導數(shù)非負,函數(shù)為增函數(shù),導數(shù)非正,函數(shù)為減函數(shù)。求函數(shù)的極值問題,基本步驟是“求導數(shù)、求駐點、研究單調性、求極值”。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011年普通高等學校招生全國統(tǒng)一考試理科數(shù)學試題重慶卷 題型:044

設f(x)=x3+ax2+bx+1的導數(shù)滿足,其中常數(shù)a,b∈R.

(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程;

(Ⅱ)設g(x)=(x)e-x,求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(重慶卷)解析版 題型:解答題

 (本小題滿分13分。(Ⅰ)小題6分(Ⅱ)小題7分。)

的導數(shù)滿足其中常數(shù).

(Ⅰ)求曲線在點處的切線方程。

(Ⅱ)設求函數(shù)的極值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分,(Ⅰ)小問6分,(Ⅱ)小問7分.)

的導數(shù)滿足,其中常數(shù)

   (Ⅰ)求曲線在點處的切線方程;

   (Ⅱ) 設,求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

的導數(shù)滿足,,其中常數(shù)、。

⑴求曲線在點處的切線方程;

⑵設,求函數(shù)的極值。

查看答案和解析>>

同步練習冊答案