設(shè)a=
2
,b=
7
-
3
,c=
6
-
2
,則a,b,c的大小關(guān)系為
a>c>b
a>c>b
分析:利用分析法比較b與c的大小,再同理比較a與b,a與c的大小即可.
解答:解:b=
7
-
3
<c=
6
-
2
?
7
+
2
6
+
3
?(
7
+
2
)
2
(
6
+
3
)
2
⇒9+2
14
<9+2
18
⇒14<18,成立,
故b<c;
又a-c=2
2
-
6
=
8
-
6
>0,
∴a>c;
綜上知,a>c>b.
故答案為:a>c>b.
點評:本題考查不等關(guān)系與不等式,突出分析法在比較大小中的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•三明模擬)(1)選修4-2:矩陣與變換
設(shè)矩陣M=
1a
b1

(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.
(2)選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(α為參數(shù)),點Q極坐標為(2,
4
)

(Ⅰ)化圓C的參數(shù)方程為極坐標方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若關(guān)于x的不等式f(x)≥4的解集為A,求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B、C三點共線,且A(-2,1),B(2,-7),C(3,λ),則λ等于(  )

    A.9      B.-9          C.3                D.-3

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年普通高中招生考試福建省高考理科數(shù)學(xué) 題型:解答題

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分,如果多做,則按所做的前兩題計分,做答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分)選修4-2:矩陣與變換

設(shè)矩陣 (其中a>0,b>0).

(I)若a=2,b=3,求矩陣M的逆矩陣M-1;

(II)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C’:,求a,b的值.

 

查看答案和解析>>

同步練習(xí)冊答案