分析 首先畫出平面區(qū)域,利用z=4x-y變形為y=4x-z的幾何意義求其最小值.
解答 解:x,y滿足的區(qū)域如圖,
由目標(biāo)函數(shù)步驟為y=4x-z
得到當(dāng)直線經(jīng)過圖中的C時(shí)z最小,
由y=-$\left\{\begin{array}{l}{y=-2x-1}\\{y=x+1}\end{array}\right.$得到C($-\frac{2}{3}$,$\frac{1}{3}$),
所以z的最小值為$-\frac{2}{3}×4-\frac{1}{3}$=-3;
故答案為:-3.
點(diǎn)評 本題考查了簡單線性規(guī)劃問題;正確畫出平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義求最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1-3i | B. | $\sqrt{5}$ | C. | 10 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com