已知b>a>0,ab=2,則
a2+b2
a-b
的取值范圍是( 。
A、(-∞,-4]
B、(-∞,-4)
C、(-∞,-2]
D、(-∞,-2)
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:由題意可得
a2+b2
a-b
=-
(b-a)2+2ab
b-a
=-
(b-a)2+4
b-a
=-(b-a+
4
b-a
)≤-2
(b-a)
4
b-a
=-4,注意等號(hào)成立的條件即可.
解答: 解:∵b>a>0,ab=2,
a2+b2
a-b
=-
(b-a)2+2ab
b-a

=-
(b-a)2+4
b-a
=-(b-a+
4
b-a

≤-2
(b-a)
4
b-a
=-4
當(dāng)且僅當(dāng)b-a=
4
b-a
時(shí)取等號(hào),
a2+b2
a-b
的取值范圍為(-∞,-4]
故選:A
點(diǎn)評(píng):本題考查基本不等式求最值,變形為可用基本不等式的形式并注意等號(hào)成立的條件是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2和函數(shù)g(x)=sin4x,若f(x)的反函數(shù)為h(x),則h(x)與g(x)兩圖象交點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是公差為d等差數(shù)列,{bn}是公比為q等比數(shù)列,且a1=b1=1,d=q=2,求數(shù)列{an•bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=
2
1+
3
i
,則|z|=(  )
A、
1
2
B、
3
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a1=1,a3=4,則a2=( 。
A、2
B、
2
C、±2
D、±
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意實(shí)數(shù)x,都有f(x)=loga(2+ex-1)≤-1,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(x 
1
2
-y 
1
2
)÷(x 
1
4
-y 
1
4
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x∈R+,lnx>0”的否定是( 。
A、?x∈R+,lnx>0
B、?x∈R+,lnx≤0
C、?x∈R+,lnx>0
D、?x∈R+,lnx≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓心C在x軸上的圓過(guò)點(diǎn)A(2,2)和B(4,0).
(1)求圓C的方程;
(2)求過(guò)點(diǎn)M(4,6)且與圓C相切的直線方程;
(3)已知線段PQ的端點(diǎn)Q的坐標(biāo)為(3,5),端點(diǎn)P在圓C上運(yùn)動(dòng),求線段PQ的中點(diǎn)N的軌跡.

查看答案和解析>>

同步練習(xí)冊(cè)答案