精英家教網 > 高中數學 > 題目詳情
橢圓的中心是原點O,它的短軸長為2
2
,相應于焦點F(c,0)(c>0)的準線l與x軸相交于點A,|OF|=2|FA|,過點A的直線與橢圓相交于P、Q兩點.
(1)求橢圓的方程及離心率;
(2)若
OP
OQ
=0
,求直線PQ的方程.
查看本題解析需要登錄
查看解析如何獲取優(yōu)點?普通用戶:2個優(yōu)點。
如何申請VIP用戶?VIP用戶:請直接登錄即可查看。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

橢圓的中心是原點O,它的短軸長為2
2
,相應于焦點F(c,0)(c>0)的準線l與x軸相交于點A,|OF|=2|FA|,過點A的直線與橢圓相交于P、Q兩點.
(1)求橢圓的方程及離心率;
(2)若
OP
OQ
=0
,求直線PQ的方程;
(3)設
AP
AQ
(λ>1),過點P且平行于準線l的直線與橢圓相交于另一點M,證明
FM
=-λ
FQ

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓的中心是原點O,它的短軸長為2
2
,相應于焦點F(c,0)(c>0)的準線l與x軸相交于點A,|OF|=2|FA|,過點A的直線與橢圓相交于P、Q兩點.
(1)求橢圓的方程及離心率;
(2)若
OP
OQ
=0
,求直線PQ的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓的中心是原點O,短軸長為2
3
,左焦點為F(-c,0)(c>0),相應的準線l與x軸交于點A,且點F分
AO
的比為3,過點A的直線與橢圓相交于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若PF⊥QF,求直線PQ的方程;
(Ⅲ)設
AQ
AP
(λ>1),點Q關于x軸的對稱點為Q′,求證:
FQ′
=-λ
FP

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)已知橢圓的中心是原點O,焦點在x軸上,過其右焦點F作斜率為1的直線l交橢圓于A.B兩點,若橢圓上存在一點C,使四邊形OACB為平行四邊形.
(1)求橢圓的離心率;
(2)若△OAC的面積為15
5
,求這個橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:2012年蘇教版高中數學選修1-1 2.2橢圓練習卷(解析版) 題型:解答題

橢圓的中心是原點O,它的短軸長為,相應于焦點F(c,0)()的準線與x軸相交于點A,|OF|=2|FA|,過點A的直線與橢圓相交于P、Q兩點 .

(1)求橢圓的方程及離心率;

(2)若,求直線PQ的方程;

(3)設),過點P且平行于準線的直線與橢圓相交于另一點M,證明.

 

查看答案和解析>>

同步練習冊答案