【題目】某校開設(shè)A、B、C、D、E五門選修課,要求每位同學(xué)彼此獨(dú)立地從中選修3門課程.某甲同學(xué)必選A課程,不選B課程,另從其余課程中隨機(jī)任選兩門課程.乙、丙兩名同學(xué)從五門課程中隨機(jī)任選三門課程.
(1)求甲同學(xué)選中C課程且乙、丙同學(xué)未選C課程的概率;
(2)用X表示甲、乙、丙選中C課程的人數(shù)之和,求X的分布列和數(shù)學(xué)期望.
【答案】
(1)解:設(shè)甲同學(xué)選中C課程為事件A,乙同學(xué)選中C課程為事件B,丙同學(xué)選中C課程為事件C,
甲同學(xué)選中C課程且乙、丙同學(xué)未選C課程為事件D,
由P(A)= = ,P( )= = ,P( )= = ,
由題意知每位同學(xué)選課彼此獨(dú)立,
∴甲同學(xué)選中C課程且乙、丙同學(xué)未選C課程的概率:
P(D)=P(A)P( )P( )= =
(2)解:由題意得X的可能取值為0,1,2,3,
P(X=0)= = ,
P(X=1)= + + = ,
P(X=2)= + = ,
P(X=3)= = .
則X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
∴數(shù)學(xué)期望E(X)= =
【解析】(1)設(shè)甲同學(xué)選中C課程為事件A,乙同學(xué)選中C課程為事件B,丙同學(xué)選中C課程為事件C,甲同學(xué)選中C課程且乙、丙同學(xué)未選C課程為事件D,由P(D)=P(A)P( )P( ),能求出甲同學(xué)選中C課程且乙、丙同學(xué)未選C課程的概率.(2)由題意得X的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望E(X).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足條件,且函數(shù)是偶函數(shù),當(dāng)時(shí), ;當(dāng)時(shí), 的最小值為,則=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率;
(2)求ξ的分布列和數(shù)學(xué)期望;
(3)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在多面體SP﹣ABCD中,底面ABCD為矩形,AB=PC=1,AD=AS=2,且AS∥CP且AS⊥面ABCD,E為BC的中點(diǎn).
(1)求證:AE∥面SPD;
(2)求三棱錐S-BPD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (x+ ),g(x)= (x﹣ ).
(1)求函數(shù)h(x)=f(x)+2g(x)的零點(diǎn);
(2)求函數(shù)F(x)=[f(x)]2n﹣[g(x)]2n(n∈N*)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,對(duì)角線AC與相鄰兩邊所成的角為α,β,則cos2α+cos2β=1.類比到空間中一個(gè)正確命題是:在長方體ABCD﹣A1B1C1D1中,對(duì)角線AC1與相鄰三個(gè)面所成的角為α,β,γ,則有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢驗(yàn)學(xué)習(xí)情況,某培訓(xùn)機(jī)構(gòu)于近期舉辦一場(chǎng)競(jìng)賽活動(dòng),分別從甲、乙兩班各抽取10名學(xué)員的成績進(jìn)行統(tǒng)計(jì)分析,其成績的莖葉圖如圖所示(單位:分),假設(shè)成績不低于90分者命名為“優(yōu)秀學(xué)員”.
(1)分別求甲、乙兩班學(xué)員成績的平均分(結(jié)果保留一位小數(shù));
(2)從甲班4名優(yōu)秀學(xué)員中抽取兩人,從乙班2名80分以下的學(xué)員中抽取一人,求三人平均分不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,我市某居民小區(qū)擬在邊長為1百米的正方形地塊ABCD上劃出一個(gè)三角形地塊APQ種植草坪,兩個(gè)三角形地塊PAB與QAD種植花卉,一個(gè)三角形地塊CPQ設(shè)計(jì)成水景噴泉,四周鋪設(shè)小路供居民平時(shí)休閑散步,點(diǎn)P在邊BC上,點(diǎn)Q在邊CD上,記∠PAB=a.
(1)當(dāng)∠PAQ= 時(shí),求花卉種植面積S關(guān)于a的函數(shù)表達(dá)式,并求S的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求PB+DQ=PQ,請(qǐng)?zhí)骄俊螾AQ是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com