9粒種子分種在3個坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑不需要補種.若一個坑里的種子都沒發(fā)芽,則這個坑需要補種,假定每個坑至多補種一次,每補種1個坑需10元,用ξ表示補種費用,寫出ξ的分布列并求ξ的數(shù)學期望.(精確到0.01)

解析:因為單坑內(nèi)的3粒種子都不發(fā)芽的概率為(1-0.5)3=,所以單坑不需要補種的概率為1=.

3個坑都不需要補種的概率×()0×()3=0.670,

恰有1個坑需要補種的概率為×()1×()2=0.287,

恰有2個坑需要補種的概率為×()2×()1=0.041,

3個坑都需要補種的概率為×()3×()0=0.002.

補種費用ξ的分布列為

ξ

0

10

20

30

P

0.670

0.287

0.041

0.002

Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.75.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

20、9粒種子分種在3個坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑不需要補種;若一個坑內(nèi)的種子都沒發(fā)芽,則這個坑需要補種.假定每個坑至多補種一次,每補種1個坑需10元,用ξ表示補種費用,寫出ξ的分布列并求ξ的數(shù)學期望.(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

05年全國卷Ⅰ理)(12分)

9粒種子分種在3個坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為,若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑不需要補種,若一個坑內(nèi)的種子都沒發(fā)芽,則這個坑需要補種.假定每個坑至多補種一次,每補種1個坑需10元,用ξ表示補種費用,寫出ξ的分布列并求ξ的數(shù)學期望.(精確到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

9粒種子分種在3個坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑不需要補種,若一個坑里的種子都沒發(fā)芽,則這個坑需要補種,假定每個坑至多補種一次,每補種1個坑需10元,用ξ表示補種費用,寫出ξ的分布列并求ξ的數(shù)學期望.(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學 來源:2005年山西省高考數(shù)學試卷Ⅰ(理)(解析版) 題型:解答題

9粒種子分種在3個坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑不需要補種;若一個坑內(nèi)的種子都沒發(fā)芽,則這個坑需要補種.假定每個坑至多補種一次,每補種1個坑需10元,用ξ表示補種費用,寫出ξ的分布列并求ξ的數(shù)學期望.(精確到0.01)

查看答案和解析>>

同步練習冊答案