設(shè)a1,a2,…,an是1,2,…,n的一個排列,把排在ai的左邊且比ai小的數(shù)的個數(shù)為ai(i=1,2,…n)的順序數(shù),如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0,則在1至8這8個數(shù)的排列中,8的順序數(shù)為2,7的順序數(shù)為3,5的順序數(shù)為3的不同排列的種數(shù)為


  1. A.
    48
  2. B.
    120
  3. C.
    144
  4. D.
    192
C
分析:根據(jù)8和7的特點得到8和7的位置,題目轉(zhuǎn)換為數(shù)列 123456 保證5的順序數(shù)是3就可以,分兩種情況討論,6在5前面,此時5一定在第5位,除6外前面有3個數(shù),6在5后面,此時5一定在第4位上,6在后面兩個數(shù)字上,根據(jù)分類原理得到結(jié)果.
解答:由題意知8一定在第三位,前面有幾位數(shù),順序數(shù)就為幾而且對其他數(shù)的順序數(shù)沒有影響,因為8最大,7一定在第五位,因為前面除了8以外所有數(shù)都比他小現(xiàn)在對其他數(shù)的順序數(shù)沒有影響,
∵在8后面又比其他數(shù)小∴這兩個可以不管可以把題轉(zhuǎn)換為數(shù)列 123456 保證5的順序數(shù)是3就可以了,
∴分兩種情況 6在5前面,此時5一定在第5位,除6外前面有3個數(shù),故有4×4×3×2×1=96種 6在5后面,此時5一定在第4位上,6在后面兩個數(shù)字上,故有2×4×3×2×1=48∴共有96+48=144種結(jié)果,
故選C.
點評:數(shù)字問題是排列中的一大類問題,條件變換多樣,把排列問題包含在數(shù)字問題中,解題的關(guān)鍵是看清題目的實質(zhì),很多題目要分類討論,要做到不重不漏.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A1、A2是橢圓
x2
9
+
y2
4
=1
=1的長軸兩個端點,P1、P2是垂直于A1A2的弦的端點,則直線A1P1與A2P2交點的軌跡方程為( 。
A、
x2
9
+
y2
4
=1
B、
y2
9
+
x2
4
=1
C、
x2
9
-
y2
4
=1
D、
y2
9
-
x2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、設(shè)a1,a2,…,an是1,2,…,n的一個排列,把排在ai的左邊且比ai小的數(shù)的個數(shù)稱為ai的順序數(shù)(i=1,2,…,n).如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0.則在由1、2、3、4、5、6、7、8這八個數(shù)字構(gòu)成的全排列中,同時滿足8的順序數(shù)為2,7的順序數(shù)為3,5的順序數(shù)為3的不同排列的種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉安縣模擬)設(shè)a1,a2,…,an是正整數(shù)1,2,3…n的一個排列,令bj表示排在j的左邊且比j大的數(shù)的個數(shù),bj稱為j的逆序數(shù),如在排列3,5,1,4,2,6中,5的逆序數(shù)是0,2的逆序數(shù)是3,則由1至9這9個數(shù)字構(gòu)成的所有排列中,滿足1的逆序數(shù)是2,2的逆序數(shù)是3,5的逆序數(shù)是3的不同排列種數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

設(shè)A1、A2是橢圓+=1(a>b>0)長軸的兩個端點,P1P2是垂直于x軸的弦,求直線A1P1、A2P2的交點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A1、A2是橢圓+=1(a>b>0)長軸的兩個端點,P1P2是垂直于x軸的弦,求直線A1P1、A2P2的交點P的軌跡方程.

 

查看答案和解析>>

同步練習(xí)冊答案