在等比數(shù)列{}中,S4=1,S8=3,則a17+a18+a19+a20的值是
[     ]
A.14
B.16
C.18
D.20
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,當(dāng)ar=as(r≠s)時(shí),{an}必定是常數(shù)數(shù)列.然而在等比數(shù)列{an}中,對(duì)某些正整數(shù)r、s(r≠s),當(dāng)ar=as時(shí),非常數(shù)數(shù)列{an}的一個(gè)例子是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•珠海二模)在等比數(shù)列{an}中,若r,s,t是互不相等的正整數(shù),則 有等式
a
r-s
t
a
s-t
r
a
t-r
s
=1
成立.類比上述性質(zhì),相應(yīng)地,在等差數(shù)列{bn}中,若r,s,t是互不相等的正整數(shù),則有等式
(r-s)at+(s-t)ar+(t-r)as=0
(r-s)at+(s-t)ar+(t-r)as=0
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)一模)在等差數(shù)列{an}中,公差為d,前n項(xiàng)和為Sn.在等比數(shù)列{bn}中,公比為q,前n項(xiàng)和為S'n(n∈N*).
(1)在等差數(shù)列{an}中,已知S10=30,S20=100,求S30
(2)在等差數(shù)列{an}中,根據(jù)要求完成下列表格,并對(duì)①、②式加以證明(其中m、m1、m2、n∈N*).
用Sm表示S2m S2m=2Sm+m2d
Sm1Sm2表示Sm1+m2 Sm1+m2=
Sm1+Sm2+m1m2d
Sm1+Sm2+m1m2d
用Sm表示Snm Snm=
nSm+
n(n-1)
2
m2d
nSm+
n(n-1)
2
m2d
(3)在下列各題中,任選一題進(jìn)行解答,不必證明,解答正確得到相應(yīng)的分?jǐn)?shù)(若選做二題或更多題,則只批閱其中分值最高的一題,其余各題的解答,不管正確與否,一律視為無(wú)效,不予批閱):
(。 類比(2)中①式,在等比數(shù)列{bn}中,寫(xiě)出相應(yīng)的結(jié)論.
(ⅱ) (解答本題,最多得5分)類比(2)中②式,在等比數(shù)列{bn}中,寫(xiě)出相應(yīng)的結(jié)論.
(ⅲ) (解答本題,最多得6分)在等差數(shù)列{an}中,將(2)中的①推廣到一般情況.
(ⅳ) (解答本題,最多得6分)在等比數(shù)列{bn}中,將(2)中的①推廣到一般情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,若a1+a2+a3=8,a4+a5+a6=-4,則a13+a14+a15=________,數(shù)列的前15項(xiàng)的和S 15=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,首項(xiàng)a1=1,公比為q.前n項(xiàng)和為S,若用原數(shù)列的倒數(shù)組成新的對(duì)比數(shù)列,則新數(shù)列的前n項(xiàng)和為(    )

A.                  B.                C.              D.

查看答案和解析>>

同步練習(xí)冊(cè)答案