(本小題滿分12分)如圖所示多面體中,⊥平面,為平行四邊形,分別為的中點(diǎn),,.

(1)求證:∥平面;

(2)若∠=90°,求證;

(3)若∠=120°,求該多面體的體積.

 

【答案】

(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析;(Ⅲ)該五面體的體積為 。

【解析】(Ⅰ)取PC的中點(diǎn)為O,連FO,DO,可證FO∥ED,且FO=ED,所以四邊形EFOD是平行四邊形,從而可得EF∥DO,利用線面平行的判定,可得EF∥平面PDC;

(Ⅱ)先證明PD⊥平面ABCD,再證明BE⊥DP;

(Ⅲ)連接AC,由ABCD為平行四邊形可知△ABC與△ADC面積相等,所以三棱錐P-ADC與三棱錐P-ABC體積相等,即五面體的體積為三棱錐P-ADC體積的二倍.

(Ⅰ)取PC的中點(diǎn)為O,連FO,DO,∵F,O分別為BP,PC的中點(diǎn),

∥BC,且,又ABCD為平行四邊形,∥BC,且,

∥ED,且

∴四邊形EFOD是平行四邊形          --------------------------------2分

即EF∥DO   又EF平面PDC   ∴EF∥平面PDC.     ---------------------- 4分

(Ⅱ)若∠CDP=90°,則PD⊥DC,又AD⊥平面PDC  ∴AD⊥DP,

∴PD⊥平面ABCD,           ------------- 6分

  ∵BE平面ABCD,∴BE⊥DP              ------------ 8分

(Ⅲ)連結(jié)AC,由ABCD為平行四邊形可知面積相等,

所以三棱錐與三棱錐體積相等,

即五面體的體積為三棱錐體積的二倍.

∵AD⊥平面PDC,∴AD⊥DP,由AD=3,AP=5,可得DP=4又∠CDP=120°PC=2,

由余弦定理并整理得,  解得DC=2   ------------------- 10分

三棱錐的體積

∴該五面體的體積為                         -------------------- 12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案