【題目】如圖1所示,在矩形中,,,中點,將沿折起,使點到點處,且平面平面,如圖2所示.

1)求證:

2)在棱上取點,使平面平面,求平面所成銳二面角的余弦值.

【答案】1)證明見解析(2)余弦值為.

【解析】

(1)在矩形,連接于點,則由可推出,因此有,故在翻折后的四棱錐中,,據(jù)此推出平面,從而有;

(2)以點為原點,方向為軸的正方向建立空間直角坐標系,再過點于點,由平面平面可推出平面,即有,結合,可知平面,,,再結合可求出,最后再利用空間向量法求二面角的余弦值即可.

(1)在矩形,連接于點,

由題知,,,

所以,,

,所以,

所以,,

故在翻折后的四棱錐中,,

,所以平面,

平面,所以;

(2)如圖所示,以點為原點,方向為軸的正方向建立空間直角坐標系,

在矩,經計算可得,

因此,

過點于點,

因為平面平面,平面平面,

所以平面,所以,

又由(1),,

所以平面,

所以,即有,

因為點,,,

解得,,

設平面的一個法向量為,

,

,

,,

又平面的一個法向量為,

所以,

所以平面所成銳二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù))

1)求的單調區(qū)間;

2)已知關于的方程有三個實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)若不等式恒成立,求的最小值(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質量指數(shù)AQI是反映空氣質量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質量越好,其對應關系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢:

下列敘述錯誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個月的空氣質量越來越好

D. 總體來說,該市10月上旬的空氣質量比中旬的空氣質量好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(文科)已知函數(shù).

(1)若,求曲線在點處的切線方程;

(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解高一年級學生學習數(shù)學的狀態(tài),從期中考試成績中隨機抽取50名學生的數(shù)學成績,按成績分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計這50名學生數(shù)學成績的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級共有1000名學生,若本次考試成績90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計該校高一學生數(shù)學成績達到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:極坐標與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的直角坐標方程;

(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點作直線,分別與橢圓交于,,點,若,的周長為8.

1)求橢圓的方程;

2)求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,平面,,中點,下列說法中

1;

2)記二面角的平面角分別為;

3)記的面積分別為;

4,

正確說法的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案