【題目】設函數(shù).
(1)證明:,;
(2)令
①求的最大值;
②如果,且,證明:.
【答案】(1)證明見解析;(2)①的最大值為;②證明見解析.
【解析】
(1)令,則,利用導數(shù)求出函數(shù)的單調(diào)性與最值,由此可證明結(jié)論;
(2)由題意得,,
①利用導數(shù)求出函數(shù)的單調(diào)性,從而得到函數(shù)的極值與最值;
②由題意不妨設,又,可得,令,,利用導數(shù)可得函數(shù)在上單調(diào)遞增,從而可推出,結(jié)合條件可得,易得,從而借助函數(shù)在上單調(diào)遞增即可證明.
(1)證明:令,則,
由得,由得,
∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
∴函數(shù)在處取得極大值,也是最大值,
∴,
即,;
(2)解:,,
①由得,由得,
∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
∴函數(shù)在處取得極大值,也是最大值,
∴的最大值;
②由,不妨設,又,
∵當時,,且,
∴,
令,,
則,
∵,
∴,,
∴,
∴函數(shù)在上單調(diào)遞增,
又,
∴當時,,
即,則,
又,則,
∵,∴,即,
而函數(shù)在上單調(diào)遞增,
∴,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】已知如圖所示的三棱錐D﹣ABC的四個頂點均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,則球O的表面積為( )
A.4π B.12π C.16π D.36π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根據(jù)散點圖判斷,與哪一個更適宜作燒開一壺水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時間內(nèi)煤氣輸出量成正比,那么為多少時燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知、分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于直線于點,線段的中垂線交于點.記點的軌跡為曲線.
(1)求曲線的方程,并說明是什么曲線;
(2)若直線與曲線交于兩點、,則在圓上是否存在兩點、,使得,?若存在,請求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面內(nèi)與兩定點,連線的斜率之積等于的點的軌跡,加上、兩點所成的曲線為.若曲線與軸的正半軸的交點為,且曲線上的相異兩點、滿足.
(1)求曲線的軌跡方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學興趣小組為了測量校園外一座“不可到達”建筑物的高度,采用“兩次測角法”,并自制了測量工具:將一個量角器放在復印機上放大4倍復印,在中心處綁上一個鉛錘,用于測量樓頂仰角(如圖);推動自行車來測距(輪子滾動一周為1.753米).該小組在操場上選定A點,此時測量視線和鉛錘線之間的夾角在量角器上度數(shù)為37°;推動自行車直線后退,輪子滾動了10卷達到B點,此時測量視線和鉛錘線之間的夾角在量角器上度數(shù)為53°.測量者站立時的“眼高”為1.55m,根據(jù)以上數(shù)據(jù)可計算得該建筑物的高度約為___________米.(精確到0.1)
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在(為自然對數(shù)的底數(shù))處的切線方程;
(2)若對任意的,均有,則稱為在區(qū)間上的下界函數(shù),為在區(qū)間上的上界函數(shù).
①若,求證:為在上的上界函數(shù);
②若,為在上的下界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗,受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請240名同學,每人隨機寫下兩個都小于1的正實數(shù)x,y組成的實數(shù)對,再統(tǒng)計兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù)m;最后再根據(jù)計數(shù)m來估計π的值.假設統(tǒng)計結(jié)果是,那么可以估計的近似值為____________.(用分數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方體中,,,點P為內(nèi)一點(不含邊界),則不可能為( )
A.等腰三角形B.銳角三角形C.直角三角形D.鈍角三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com