精英家教網 > 高中數學 > 題目詳情

若實數x、y滿足不等式組數學公式,則數學公式的取值范圍是________.


分析:本題考查的知識點是線性規(guī)劃,處理的思路為:根據已知的約束條件 ,畫出滿足約束條件的可行域,分析 表示的幾何意義,結合圖象即可給出 的取值范圍.
解答:解:約束條件 對應的平面區(qū)域如下圖示:
表示可行域內的點(x,y)與點(-1,1)連線的斜率,
由圖可知 的取值范圍是 ,
故答案為:
點評:平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時,關鍵是正確地畫出平面區(qū)域,分析表達式的幾何意義,然后結合數形結合的思想,分析圖形,找出滿足條件的點的坐標,即可求出答案.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在R上的函數y=f(x),若對任意不等實數x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數學 來源:2008-2009學年重慶一中高三(上)10月月考數學試卷(理科)(解析版) 題型:填空題

定義在R上的函數y=f(x),若對任意不等實數x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數學 來源:2012年山東省實驗中學高考數學三模試卷(文科)(解析版) 題型:填空題

定義在R上的函數y=f(x),若對任意不等實數x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數學 來源:2013年山東省淄博市高考數學模擬試卷3(理科)(解析版) 題型:填空題

定義在R上的函數y=f(x),若對任意不等實數x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數學 來源:2012年山東省實驗中學高考數學三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數y=f(x),若對任意不等實數x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

同步練習冊答案