【題目】已知函數(shù).

1)證明:函數(shù)在其定義域上是單調(diào)遞增函數(shù).

2)設(shè),當時,不等式恒成立,求的取值范圍.

【答案】1)見解析(2

【解析】

1)先對函數(shù)求導,得到,令,再由導數(shù)方法研究單調(diào)性,求出最小值即可;

2)先將當時,不等式恒成立,化為恒成立,令,,用導數(shù)方法研究其單調(diào)性,再記,得到單調(diào)性,進而可得出結(jié)果.

1)證明:因為,所以.

,則.

時,;當時,,

在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

從而上恒成立,

上單調(diào)遞增.

2)解:當時,不等式恒成立等價于當時,不等式恒成立,即當時,恒成立.

,,則.

因為當時,,所以恒成立,

上單調(diào)遞減.

因為當時,,所以恒成立,

上單調(diào)遞減.

,因為,所以上單調(diào)遞減,所以.

因為上恒成立,所以,即.

,故的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線軸交于點,直線與拋物線交于點,兩點.直線,分別交橢圓于點、,不重合)

(1)求證:;

(2)若,求直線的斜率的值;

(3)若為坐標原點,直線交橢圓,,若,且,則是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電子商務(wù)平臺的管理員隨機抽取了1000位上網(wǎng)購物者,并對其年齡(在10歲到69歲之間)進行了調(diào)查,統(tǒng)計情況如下表所示.

年齡

人數(shù)

100

150

200

50

已知,三個年齡段的上網(wǎng)購物的人數(shù)依次構(gòu)成遞減的等比數(shù)列.

(1)求的值;

(2)若將年齡在內(nèi)的上網(wǎng)購物者定義為“消費主力軍”,其他年齡段內(nèi)的上網(wǎng)購物者定義為“消費潛力軍”.現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取5人,再從這5人中抽取2人,求這2人中至少有一人是消費潛力軍的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 是正方形, 平面 , , 分別是 , , 的中點.

1)求證:平面平面

2)在線段上確定一點,使平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國2019年新年賀歲大片《流浪地球》自上映以來引發(fā)了社會的廣泛關(guān)注,受到了觀眾的普遍好評.假設(shè)男性觀眾認為《流浪地球》好看的概率為,女性觀眾認為《流浪地球》好看的概率為.某機構(gòu)就《流浪地球》是否好看的問題隨機采訪了4名觀眾(其中2男2女).

(1)求這4名觀眾中女性認為好看的人數(shù)比男性認為好看的人數(shù)多的概率;

(2)設(shè)表示這4名觀眾中認為《流浪地球》好看的人數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017高考新課標Ⅲ,19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC;

(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以橢圓的離心率為,以其四個頂點為頂點的四邊形的面積等于

1求橢圓的標準方程;

2過原點且斜率不為0的直線與橢圓交于兩點,是橢圓的右頂點,直線分別與軸交于點,問:以為直徑的圓是否恒過軸上的定點?若恒過軸上的定點,請求出該定點的坐標;若不恒過軸上的定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是圓錐的底面的直徑,是圓上異于的任意一點,為直徑的圓與的另一個交點為的中點.現(xiàn)給出以下結(jié)論:

為直角三角形

②平面平面

③平面必與圓錐的某條母線平行

其中正確結(jié)論的個數(shù)是

A. 0B. 1C. 2D. 3

查看答案和解析>>

同步練習冊答案