18.已知函數(shù)y=f(n)滿足f(1)=8,且f(n+1)=f(n)+7,n∈N+.則f(2)=15.

分析 由已知得f(2)=f(1+1)=f(1)+7,由此利用題設(shè)條件能求出結(jié)果.

解答 解:∵函數(shù)y=f(n)滿足f(1)=8,且f(n+1)=f(n)+7,n∈N+
∴f(2)=f(1+1)=f(1)+7=8+7=15.
故答案為:15.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A到B的映射f:x→y=2x+1,那么集合B中元素5在A中對(duì)應(yīng)的元素是( 。
A.2B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在公差為2的等差數(shù)列{an}中,2a9=a12+6,則a5=( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.三個(gè)函數(shù)①y=$\frac{1}{x}$;②y=2-x;③y=-x3中,在其定義域內(nèi)是奇函數(shù)的個(gè)數(shù)是(  )
A.1B.0C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知全集U=R,集合A={x|y=log2(11-x2)>1},B={x|x2-x-6>0},M={x|x2+bx+c≥0}.
(1)求A∩B; 
(2)若∁UM=A∩B,求b、c的值.
(3)若x2+bx+c=0一個(gè)根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),求z=-2b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x2-2|x|-1.
(1)求證:f(x)是偶函數(shù);
(2)畫出函數(shù)f(x)的圖象,并寫出f(x)增區(qū)間;
(3)若方程f(x)=a有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:y=kx+2與橢圓E:x2+$\frac{{y}^{2}}{5}$=1交于A,B兩點(diǎn),若三角形AOB的面積$\frac{\sqrt{5}}{2}$,求直線的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合M={y|y≥-1),N={x|-1≤x≤1),則M∩N=(  )
A.[-1,1]B.[-1,+∞)C.[1,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把顏色分別為紅、黑、白的3個(gè)球隨機(jī)地分給甲、乙、丙3人,每人分得1個(gè)球.則事件“甲分得白球或乙分得白球”發(fā)生的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案