已知一袋有2個白球和4個黑球。
(1)采用不放回地從袋中摸球(每次摸一球),4次摸球,求恰好摸到2個黑球的概率;
(2)采用有放回從袋中摸球(每次摸一球),4次摸球,令X表示摸到黑球次數(shù),
求X的分布列和期望.
(1)、
(2)
本試題主要是考查了古典概型概率和隨機變量的分布列以及數(shù)學(xué)期望值的求解,二項分布的運用。
(1)因為一袋有2個白球和4個黑球。采用不放回地從袋中摸球(每次摸一球),4次摸球,求恰好摸到2個黑球直接利用古典概型概率公式計算得到。
(2)由于是由放回的摸球,因此是獨立重復(fù)試驗,運用其公式可以解得。
解:(1)、
(2)、X可取0,1,2,3,4
一次摸球為黑球的概率
,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有一種游戲規(guī)則如下:口袋里共裝有4個紅球和4個黃球,一次摸出4個,若顏色都相同,則
得100分;若有3個球顏色相同,另一個不同,則得50分,其他情況不得分. 小張摸一次得分的期望是_____ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

QQ先生的魚缸中有7條魚,其中6條青魚和1條黑魚,計劃從當天開始,每天中午從該魚缸中抓出1條魚(每條魚被抓到的概率相同)并吃掉.若黑魚未被抓出,則它每晚要吃掉1條青魚(規(guī)定青魚不吃魚).
(Ⅰ)求這7條魚中至少有6條被QQ先生吃掉的概率;
(Ⅱ)以表示這7條魚中被QQ先生吃掉的魚的條數(shù),求的分布列及其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在第9屆校園文化藝術(shù)節(jié)棋類比賽項目報名過程中,我校高二(2)班共有16名男生和14名女生預(yù)報名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會圍棋.
(I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:
 
會圍棋
不會圍棋
總計

 
 
 

 
 
 
總計
 
 
30
并回答能否在犯錯的概率不超過0.10的前提下認為性別與會圍棋有關(guān)?
參考公式:其中n=a+b+c+d
參考數(shù)據(jù):

0.40
0.25
0.10
0.010

0.708
1.323
2.706
6.635
(Ⅱ)若從會圍棋的選手中隨機抽取3人成立該班圍棋代表隊,則該代表隊中既有男又
有女的概率是多少?
(Ⅲ)若從14名女棋手中隨機抽取2人參加棋類比賽,記會圍棋的人數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋中裝著標有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;
(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.某漁船要對下月是否出海做出決策,如出海后遇到好天氣,可得收益6000元,如出海后天氣變壞將損失8000元,若不出海,無論天氣如何都將承擔1000元損失費,據(jù)氣象部門的預(yù)測下月好天的概率為0.6,天氣變壞的概率為0.4,則該漁船應(yīng)選擇_____________(填“出!被颉安怀龊!保

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某學(xué)校隨機抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)所需時間的范圍是,樣本數(shù)據(jù)分組為,,,.
(Ⅰ)求直方圖中的值;
(Ⅱ)如果上學(xué)所需時間不少于1小時的學(xué)生可申請在學(xué)校住宿,
請估計學(xué)校600名新生中有多少名學(xué)生可以申請住宿;
(Ⅲ)從學(xué)校的新生中任選4名學(xué)生,這4名學(xué)生中上學(xué)所需時間
少于20分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中新生上學(xué)所需時間少于20分鐘的頻率作為每名學(xué)生上學(xué)所需時間少于20分鐘的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某地區(qū)對12歲兒童瞬時記憶能力進行調(diào)查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
    視覺        
視覺記憶能力
偏低
中等
偏高
超常
聽覺
記憶
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1
由于部分數(shù)據(jù)丟失,只知道從這40位學(xué)生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
(I)試確定、的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機變量的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1L2兩條路線(如圖),L1路線上有A1A2,A3三個路口,各路口遇到紅燈的概率均為;L2路線上有B1B2兩個路口,各路口遇到紅燈的概率依次為,

(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

同步練習冊答案