【題目】已知直線l1:(a-1)x+y+b=0,l2:ax+by-4=0,求滿足下列條件的a,b的值.
(1)l1⊥l2,且l1過(guò)點(diǎn)(1,1);
(2)l1∥l2,且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.
【答案】(1) ;(2) .
【解析】試題分析:(1)因?yàn)?/span>l1⊥l2,得a(a-1)+b=0.①又l1過(guò)點(diǎn)(1,1),所以a+b=0.②聯(lián)立①②可得結(jié)果,要進(jìn)行檢驗(yàn),當(dāng)a=0,b=0,方程 不成立舍去(2)因?yàn)?/span>l1∥l2,所以a-b(a-1)=0,③由題意知a>0,b>0,直線l2與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為則,
聯(lián)立求.
試題解析:
(1)∵l1⊥l2,∴a(a-1)+b=0.①
又l1過(guò)點(diǎn)(1,1),∴a+b=0.②
由①②,解得或.
當(dāng)a=0,b=0時(shí)不合題意,舍去.
∴a=2,b=-2.
(2)∵l1∥l2,∴a-b(a-1)=0,③
由題意知a>0,b>0,直線l2與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為
則,
得ab=4,④
由③④,得a=2,b=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校組織學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100],若低于60分的人數(shù)是15人,則該班的學(xué)生人數(shù)是( )
A.45
B.50
C.55
D.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,E、F分別是棱DD1、C1D1的中點(diǎn). (Ⅰ)證明:平面ADC1B1⊥平面A1BE;
(Ⅱ)證明:B1F∥平面A1BE;
(Ⅲ)若正方體棱長(zhǎng)為1,求四面體A1﹣B1BE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓上的點(diǎn)A(2,3)關(guān)于直線x+2y=0的對(duì)稱點(diǎn)仍在圓上,且直線x-y+1=0被圓截得的弦長(zhǎng)為2,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求分別滿足下列條件的直線l的方程:
(1)斜率是,且與兩坐標(biāo)軸圍成的三角形的面積是6;
(2)經(jīng)過(guò)兩點(diǎn)A(1,0)、B(m,1);
(3)經(jīng)過(guò)點(diǎn)(4,-3),且在兩坐標(biāo)軸上的截距的絕對(duì)值相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(2)對(duì)一切實(shí)數(shù)x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明對(duì)一切x∈(0,+∞),lnx> 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2cos22x﹣2,給出下列命題: ①β∈R,f(x+β)為奇函數(shù);
②α∈(0, ),f(x)=f(x+2α)對(duì)x∈R恒成立;
③x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為 ;
④x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有( )
A.①②
B.③④
C.②③
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體ABCD-A′B′C′D′的棱長(zhǎng)為a,連接A′C′,A′D,A′B,BD,BC′,C′D,得到一個(gè)三棱錐.求:
(1)三棱錐A′-BC′D的表面積與正方體表面積的比值;
(2)三棱錐A′-BC′D的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com