3.已知復數(shù)z=$\frac{2-i}{x-i}$為純虛數(shù),其中i為虛數(shù)單位,則實數(shù)x的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-3D.$\frac{1}{3}$

分析 利用復數(shù)的除法的運算法則化簡求解即可.

解答 解:復數(shù)z=$\frac{2-i}{x-i}$=$\frac{(2-i)(x+i)}{(x-i)(x+i)}$=$\frac{2x+1+(2-x)i}{{x}^{2}+1}$,因為復數(shù)為純虛數(shù),所以$\left\{\begin{array}{l}{2x+1=0}\\{2-x≠0}\end{array}\right.$,即
x=-$\frac{1}{2}$,
故選:A.

點評 本題考查復數(shù)的代數(shù)形式混合運算,復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.過圓(x-1)2+(y-2)2=2上一點(2,3)作圓的切線,則切線方程為( 。
A.x+y-5=0B.x+y-1=0C.x-y-5=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.$lg20×lg5+{lg^2}2-\frac{{{{log}_7}32}}{{{{log}_7}2}}$=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}$n2+$\frac{1}{2}n$,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列bn=2-nan求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$\vec a$=(1,2),$\vec b$=(2,y)且$\vec a$⊥$\vec b$,則$|{2\vec a+\vec b}$|=(  )
A.$2\sqrt{5}$B.$4\sqrt{5}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖所示,四棱錐S-ABCD的底面是邊長為4$\sqrt{2}$的正方形,且SA=SB=SC=SD=4$\sqrt{5}$,則過點A,B,C,D,S的球的體積為(  )
A.$\frac{125}{3}π$B.$\frac{250}{3}$πC.$\frac{500}{3}π$D.$\frac{550}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),對任意實數(shù)x有f(x+1)=f(x-1),當0<x<1時,f(x)=4x,則f(-$\frac{5}{2}$)+f(1)=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)y=$\frac{1}{1-x}$的圖象與函數(shù)y=2sinπx(-2≤x≤4)的圖象的交點為(x1,y1),(x2,y2),…,(xm,ym),則(x1+y1)+(x2+y2)+…+(xm+ym)=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知等比數(shù)列{an}中,a1=1,a5=9,則a3=3.

查看答案和解析>>

同步練習冊答案