【題目】已知函數(shù)的圖象過,若有4個不同的正數(shù)滿足,且,則從這四個數(shù)中任意選出兩個,它們的和不超過5的概率為
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)事件A表示“關(guān)于的一元二次方程有實根”,其中,為實常數(shù).
(Ⅰ)若為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù),為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
(Ⅱ)若為區(qū)間[0,5]上的均勻隨機(jī)數(shù),為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一次函數(shù).
(1)設(shè)集合和,分別從集合和中隨機(jī)取一個數(shù)作為和,求函數(shù)是增函數(shù)的概率;
(2)實數(shù)滿足條件,求函數(shù)的圖象經(jīng)過第一、二、三象限的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年天貓五一活動結(jié)束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動中消費超過3000元的人群的年齡狀況,隨機(jī)在當(dāng)?shù)叵M超過3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, , 對應(yīng)的小矩形的面積分別是,且.
(1)以頻率作為概率,若該地區(qū)五一消費超過3000元的有30000人,試估計該地區(qū)在五一活動中消費超過3000元且年齡在的人數(shù);
(2)若按照分層抽樣,從年齡在的人群中共抽取6人,再從這6人中隨機(jī)抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的空間幾何體中,平面平面,與都是邊長為2的等邊三角形,,與平面所成的角為,且點E在平面上的射影落在的平分線上.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱形的邊長為6, ,.將棱形沿對角線折起,得到三棱錐,點是棱的中點, .
(Ⅰ)求證:∥平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】衡州市英才中學(xué)貫徹黨的教育方針,促進(jìn)學(xué)生全面發(fā)展,積極組織開展了豐富多樣的社團(tuán)活動,根據(jù)調(diào)查,英才中學(xué)在傳統(tǒng)民族文化的繼承方面開設(shè)了“泥塑”、“剪紙”、“曲藝”三個社團(tuán),三個社團(tuán)參加的人數(shù)如下表所示:
社團(tuán) | 泥塑 | 剪紙 | 曲藝 |
人數(shù) | 320 | 240 | 200 |
為調(diào)查社團(tuán)開展情況,學(xué)校社團(tuán)管理部采用分層抽樣的方法從中抽取一個容量為的樣本,已知從“剪紙”社團(tuán)抽取的同學(xué)比從“泥塑”社團(tuán)抽取的同學(xué)少2人。
(1)求三個社團(tuán)分別抽取了多少同學(xué);
(2)若從“剪紙”社團(tuán)抽取的同學(xué)中選出2人擔(dān)任該社團(tuán)活動監(jiān)督的職務(wù),已知“剪紙”社團(tuán)被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某單位員工的月工資水平,從該單位500位員工中隨機(jī)抽取了50位進(jìn)行調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:
月工資 (單位:百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
男員工數(shù) | 1 | 8 | 10 | 6 | 4 | 4 |
女員工數(shù) | 4 | 2 | 5 | 4 | 1 | 1 |
(1) 試由上圖估計該單位員工月平均工資;
(2)現(xiàn)用分層抽樣的方法從月工資在和的兩組所調(diào)查的男員工中隨機(jī)選取5人,問各應(yīng)抽取多少人?
(3)若從月工資在和兩組所調(diào)查的女員工中隨機(jī)選取2人,試求這2人月工資差不超過1000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com