解不等式:x1ax1)(a1).

 

答案:
解析:

解:原不等式

 、佟a=2時,不等式的解為

 、a>2時,a-2>0,故原不等式解為xa-2

 、郛1<a<2時,a-2<0,

∵  (a-2)-()=

  ∴  原不等式解為x≥0

 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x2+1
-ax
,其中a>0,
(1)解不等式f(x)≤1;
(2)證明:當a≥1時,函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+x-a,a∈R.
(1)若a=1,解不等式f(x)≥1;
(2)若不等式f(x)>-2x2-3x+1-2a對一切實數(shù)x恒成立,求實數(shù)a的取值范圍;
(3)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinx-cosx(x∈[0,π]
),
(1)當x為何值時,f(x)取得最大值,并求函數(shù)f(x)的值域;
(2)解不等式f(x)≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
ax-1x+1
;其中a∈R

(Ⅰ)解不等式f(x)≤1;
(Ⅱ)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x2+1
-ax,其中a>0

(1)解不等式f(x)≤1
(2)求證:當a≥1時,函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)函數(shù)
(3)求使f(x)>0對一切x∈R*恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案