12.在等差數(shù)列{bn}中,已知b3,b11是方程ax2+bx+c=0的兩個實數(shù)根,若b7=3,則$\frac{a}$=-6.

分析 由等差數(shù)列的性質(zhì)及韋達定理得到b3+b11=2b7=-$\frac{a}$=6,由此能求出結(jié)果.

解答 解:∵在等差數(shù)列{bn}中,b3,b11是方程ax2+bx+c=0的兩個實數(shù)根,b7=3,
∴b3+b11=2b7=-$\frac{a}$=6,
∴$\frac{a}$=-6.
故答案為:-6.

點評 本題考查兩數(shù)比值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意韋達定理、等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,A,B,C為三角形的三個內(nèi)角,則
(1)A+B+C=π;
(2)A+B=π-C;
(3)sin(A+B)=sinC;
(4)sin$\frac{A+B}{2}$=cos$\frac{C}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)是定義在R上的奇函數(shù),且對任意的x∈R都有f(x+3)-f(-x)=0,當(dāng)x∈(0,1]時f(x)=x2-4x,則f(2015)+f(2016)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={1,2},B={1,2,…,4n}(n∈N*),設(shè)C={(x,y)|x整除y或y整除x,x∈A,y∈B},令f(n)表示集合C所含元素的個數(shù).
(1)求f(1),f(2),f(3)的值;
(2)由(1)猜想f(n)的表達式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知正六棱錐S-ABCDEF的底面邊長為2,高為1,現(xiàn)從該棱錐的7個頂點中隨機取3個點構(gòu)成三角形,設(shè)隨機變量X表示所得的三角形的面積.
(1)求概率P(X=$\sqrt{3}$)的值;
(2)求X的分布列,并求其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某商場想通過檢查發(fā)票存根及銷售記錄的2%來快速估計每月的銷售總額,采取如下方法:從某本發(fā)票的存根中隨機抽一張,如15號,然后按序往后將65號,115號,165號,…發(fā)票存根上的銷售額組成一個調(diào)查樣本.這種抽取樣本的方法是( 。
A.抽簽法B.隨機數(shù)法C.系統(tǒng)抽樣法D.其他方式的抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=x2+x-alnx,則a<3是函數(shù)f(x)在[1,+∞)上單調(diào)遞增的充分不必要條件.(選填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{3}$-y2=1的漸近線上的一點A到其右焦點F的距離等于2,拋物線y2=2px(p>0)過點A,則該拋物線的方程為( 。
A.y2=2xB.y2=xC.y2=$\frac{1}{2}$xD.y2=$\frac{1}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:?x∈(0,$\frac{π}{2}$),sinx<tanx,則( 。
A.p是真命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0>tanx0
B.p是真命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0<tanx0
C.p是假命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0<tanx0
D.p是真命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0≥tanx0

查看答案和解析>>

同步練習(xí)冊答案