8.若$f(x)=\left\{{\begin{array}{l}{sin\frac{πx}{6}(x≤0)}\\{1-2x(x>0)}\end{array}}\right.$,則f[f(1)]=-$\frac{1}{2}$.

分析 利用分段函數(shù)先求出f(1)=1-2×1=-1,從而f[f(1)]=f(-1),由此能求出結(jié)果.

解答 解:∵$f(x)=\left\{{\begin{array}{l}{sin\frac{πx}{6}(x≤0)}\\{1-2x(x>0)}\end{array}}\right.$,
∴f(1)=1-2×1=-1,
f[f(1)]=f(-1)=$sin(-\frac{π}{6})$=-sin$\frac{π}{6}$=-$\frac{1}{2}$.
故答案為:-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若x,y∈R,則“|x|>|y|”是“x2>y2”的( 。
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的個(gè)數(shù)是( 。
①命題“?x∈R,x3-x2+1≤0”的否定是“$?{x_0}∈R,x_0^3-x_0^2+1>0$;
②“$b=\sqrt{ac}$”是“三個(gè)數(shù)a,b,c成等比數(shù)列”的充要條件;
③“m=-1”是“直線mx+(2m-1)y+1=0和直線3x+my+2=0垂直”的充要條件:
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=m-|x-2|,不等式f(x+2)≥0的解集為[-2,2].
(1)求m的值;
(2)若?x∈R,f(x)≥-|x+6|-t2+t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某同學(xué)用“五點(diǎn)法”畫函數(shù)$f(x)=2sin(2x-\frac{π}{3})+1$在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
2x-$\frac{π}{3}$-$\frac{4}{3}$π-$\frac{π}{2}$0$\frac{π}{2}$$\frac{2}{3}$π
x-$\frac{π}{2}$-$\frac{π}{3}$-$\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{π}{2}$
f(x)
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并在給出的直角坐標(biāo)系中,畫出f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象;
(2)求f(x)的最小值及取最小值時(shí)x的集合;
(3)求f(x)在$x∈[0,\frac{π}{2}]$時(shí)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(2x)=x•log32,則f(39)的值為(  )
A.$\frac{1}{6}$B.$\frac{1}{9}$C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某幾何體的三視圖如圖所示,該幾何體的體積為8π+$\frac{64}{3}$,,其表面積為8π+16+16$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某單位要在800名員工中抽去80名員工調(diào)查職工身體健康狀況,其中青年員工400名,中年員工300名,老年員工100名,下列說法錯(cuò)誤的是( 。
A.老年人應(yīng)作為重點(diǎn)調(diào)查對(duì)象,故抽取的老年人應(yīng)超過40名
B.每個(gè)人被抽到的概率相同為$\frac{1}{10}$
C.應(yīng)使用分層抽樣抽取樣本調(diào)查
D.抽出的樣本能在一定程度上反映總體的健康狀況

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),且“P(ξ>a)=P(ξ<a)”,則關(guān)于x的二項(xiàng)式(x2-$\frac{a}{x}$)3的展開式的常數(shù)項(xiàng)為( 。
A.2B.-2C.12D.-12

查看答案和解析>>

同步練習(xí)冊(cè)答案