Processing math: 11%
1.已知{an}為等比數(shù)列,且a1+a3=5,a2+a4=10.
(1)若an=16,求n;
(2)設數(shù)列{an}的前n項和為Sn,求S8

分析 (1)利用等比數(shù)列的通項公式即可得出.
(2)由(1)中得到的首項和公比,結(jié)合等比數(shù)列的前n項和公式進行解答.

解答 解:(1)設等比數(shù)列{an}的公比為q,
∵a1+a3=5,a2+a4=10,
∴q(a1+a3)=10,解得q=2.
代入a1+a3=5,a1+a1×22=5,
解得a1=1.
∴an=2n-1
(2)由(1)知a1=1,q=2.則S8=1×12812=255.

點評 本題考查了等比數(shù)列的通項公式和前n項和,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.設函數(shù)f(x)=lnx-ax1x(a∈R).
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)已知g(x)=f(x+1),當a>0時,若對任意的x≥0,恒有g(shù)(x))≥0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,已知AB⊥平面BEC,AB∥CD,AB=BC=4,CD=2,△BEC為等邊三角形,F(xiàn),G分別是AB,CD的中點.求證.
(Ⅰ)平面ABE⊥平面ADE;
(Ⅱ)求平面ADE與平面EFG所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若傾斜角為\frac{π}{6}的直線過橢圓\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)的左焦點F且交橢圓于A,B兩點,若|AF|=3|BF|,則橢圓的離心率為\frac{\sqrt{3}}{3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.從參加環(huán)保知識競賽的學生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖所示,觀察圖形,回答下列問題:
(1)[80,90)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).
(3)估計這次環(huán)保知識競賽成績的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知等腰梯形ABCD中,AB∥DC,∠A=∠B=60°,等腰梯形ABCD外接圓的半徑為1,則這個梯形面積S的取值范圍(0,\frac{3}{2}].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在同一直角坐標系中,方程\frac{x^2}{9}+\frac{y^2}{4}=1所對應的圖形經(jīng)過伸縮變換\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.后的圖形所對應的方程為(  )
A.\frac{x^2}{81}+\frac{y^2}{16}=1B.x2+y2=1C.\frac{x^2}{27}+\frac{y^2}{8}=1D.\frac{x^2}{3}+\frac{y^2}{2}=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知m,n是空間中兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是(  )
A.若m⊥n,n⊥α,則m∥αB.若α⊥β,m∥α,則m⊥β
C.若m∥α,n∥β,m∥n,則α∥βD.若m⊥β,m∥α,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.以下四個命題中:
①已知圓C上一定點A和一動點B,O為坐標原點,若\overrightarrow{OP}=\frac{1}{2}({\overrightarrow{OA}+\overrightarrow{OB}}),則動點P的軌跡為圓;
②設A、B為兩個定點,k為非零常數(shù),|\overrightarrow{PA}}|-|{\overrightarrow{PB}}|=k,則動點P的軌跡為雙曲線;
③0<θ<\frac{π}{4},則雙曲線C1\frac{x^2}{{{{cos}^2}θ}}-\frac{y^2}{{{{sin}^2}θ}}=1與C2\frac{y^2}{{{{sin}^2}θ}}-\frac{x^2}{{{{sin}^2}θ{{tan}^2}θ}}=1的離心率相同;
④已知兩定點F1(-1,0),F(xiàn)2(1,0)和一動點P,若|PF1|•|PF2|=a2(a≠0),則點P的軌跡關(guān)于原點對稱.
其中正確命題的序號為①③④        .

查看答案和解析>>

同步練習冊答案