【題目】來自某校一班和二班的共計9名學生志愿服務者被隨機平均分配到運送礦泉水、清掃衛(wèi)生、維持秩序這三個崗位服務,且運送礦泉水崗位至少有一名一班志愿者的概率是 .
(1)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(2)設隨機變量X為在維持秩序崗位服務的一班的志愿者的人數,求X分布列及期望.
【答案】解:(Ⅰ)記“至少一名一班志愿者被分到運送礦泉水崗位”為事件A,
則A的對立事件為“沒有一班志愿者被分到運送礦泉水崗位”,
設有一班志愿者x個,1≤x<9,那么 ,
解得x=5,即來自一班的志愿者有5人,來自二班志愿者4人;
記“清掃衛(wèi)生崗位恰好一班1人,二班2人”為事件C,
那么 ,
所有清掃衛(wèi)生崗位恰好一班1人,二班2人的概率是 ;
(2)根據題意,X的所有可能值為0,1,2,3;
,
,
,
所以X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
數學期望為 = .
【解析】(1)利用題目中所給事件的概率求得一班與二班的志愿者,再求得所有清掃衛(wèi)生崗位恰好一班1人,二班2人的概率;(2)先求得X的所有可能值,再求得可能值對應的概率,即可列出X的分布列,再求數學期望.
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數)的最小正周期為π,當x= 時,函數f(x)取得最小值,則下列結論正確的是( )
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}定義為a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)當a>0時,定義數列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整數i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一組(i,j),如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}與{bn}滿足an+1﹣an=2(bn+1﹣bn),n∈N+ , bn=2n﹣1,且a1=2.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設 ,Tn為數列{cn}的前n項和,求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= 設方程f(x)=2﹣x+b(b∈R)的四個實根從小到大依次為x1 , x2 , x3 , x4 , 對于滿足條件的任意一組實根,下列判斷中一定成立的是( 。
A.x1+x2=2
B.e2<x3x4<(2e﹣1)2
C.0<(2e﹣x3)(2e﹣x4)<1
D.1<x1x2<e2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長度大于1米,且AC比AB長0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為( 。
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A、B兩點,M是AB 的中點,過M作x 軸的垂線交C于N點.
(Ⅰ)證明:拋物線C在N 點處的切線與AB 平行;
(Ⅱ)是否存在實數k,使以AB為直徑的圓M經過N點?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 , .
(1)求函數f(x)的值域;
(2)已知銳角△ABC的兩邊長a,b分別為函數f(x)的最小值與最大值,且△ABC的外接圓半徑為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C所對的邊分別為a,b,c,且3bsinA=c,D為AC邊上一點.
(1)若D是AC的中點,且 , ,求△ABC的最短邊的邊長.
(2)若c=2b=4,S△BCD= ,求DC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com