(選做題)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
【答案】分析:根據(jù)特征多項(xiàng)式的一個(gè)零點(diǎn)為3,可得x=1,再回代到方程f(λ)=0即可解出另一個(gè)特征值為λ2=-1,最后利用求特征向量的一般步驟,可求出其對(duì)應(yīng)的一個(gè)特征向量.
解答:解:矩陣M的特征多項(xiàng)式為=(λ-1)(λ-x)-4…(1分)
因?yàn)棣?sub>1=3方程f(λ)=0的一根,所以x=1…(3分)
由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)
設(shè)λ2=-1對(duì)應(yīng)的一個(gè)特征向量為,
得x=-y…(8分)
令x=1則y=-1,
所以矩陣M的另一個(gè)特征值為-1,對(duì)應(yīng)的一個(gè)特征向量為…(10分)
點(diǎn)評(píng):本題主要考查了特征值與特征向量的計(jì)算的知識(shí),同時(shí)考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市西亭高級(jí)中學(xué)高三(上)期中數(shù)學(xué)復(fù)習(xí)試卷(五)(解析版) 題型:解答題

(選做題)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京師大附中高三(上)12月學(xué)情反饋數(shù)學(xué)試卷(解析版) 題型:解答題

(選做題)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷D(十二)(解析版) 題型:解答題

(選做題)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省蘇州市高三一?记斑m應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題

(選做題)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

同步練習(xí)冊(cè)答案