15.已知A(-1,0),B是圓F:x2-2x+y2-11=0(F為圓心)上一動點,線段AB的垂直平分線交BF于P,則動點P的軌跡方程為(  )
A.$\frac{x^2}{12}+\frac{y^2}{11}=1$B.$\frac{x^2}{36}-\frac{y^2}{35}=1$C.$\frac{x^2}{3}-\frac{y^2}{2}=1$D.$\frac{x^2}{3}+\frac{y^2}{2}=1$

分析 利用橢圓的定義判斷點P的軌跡 是以A、F 為焦點的橢圓,求出a、b的值,即得橢圓的方程.

解答 解:由題意得 圓心F(1,0),半徑等于2$\sqrt{3}$,|PA|=|PB|,
∴|PF|+|PA|=|PF|+|PB|=|BF|=半徑2$\sqrt{3}$>|AF|,
故點P的軌跡是以A、F 為焦點的橢圓,
2a=2$\sqrt{3}$,c=1,∴b=$\sqrt{2}$,∴橢圓的方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1.
故選D.

點評 本題考查用定義法求點的軌跡方程,結(jié)合橢圓的定義求軌跡是解題的難點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=0.3${\;}^{2-x-{x}^{2}}$的定義域為R;單調(diào)遞增區(qū)間[-$\frac{1}{2}$,+∞);值域[$0.{3}^{\frac{9}{4}}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如果正數(shù)a,b滿足a+b=5,則$\frac{1}{a+1}+\frac{1}{b+2}$的最小值為(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=-\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+2{a^2}x+b,a,b∈R$.
(1)若曲線y=f(x)在點P(0,f(0))處的切線與曲線y=f(x)的公共點的橫坐標(biāo)之和為3,求a的值;
(2)當(dāng)$0<a≤\frac{1}{2}$時,對任意c,d∈[-1,2],使f(c)-b+f'(d)≥M+8a恒成立,求實數(shù)M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若關(guān)于x,y的二元一次方程組$\left\{\begin{array}{l}ax+y=a+1\\ x+ay=2a\end{array}\right.$無解,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法中正確的是( 。
A.“a>b”是“l(fā)og2a>log2b”的充要條件
B.若函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個單位得到的函數(shù)圖象關(guān)于y軸對稱
C.命題“在△ABC中,$A>\frac{π}{3}$,則$sinA>\frac{{\sqrt{3}}}{2}$”的逆否命題為真命題
D.若數(shù)列{an}的前n項和為${S_n}={2^n}$,則數(shù)列{an}是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=2|x|,記a=f(log0.53),b=log25,c=f(0),則a,b,c的大小關(guān)系為(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a為實數(shù),f(x)=(x2-4)(x-a),
(1)求導(dǎo)數(shù)f'(x);
(2)若x=-1是函數(shù)f(x)的極值點,求f(x)在[-2,2]上的最大值和最小值;
(3)若f(x)在(-∞,-2]和[2,+∞)上都是遞增的,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.集合P={y|y=-x2+2},Q={x|y=-x+2}則P∩Q是( 。
A.(0,2),(1,1)B.{(0,2),(1,1)}C.D.{y|y≤2}

查看答案和解析>>

同步練習(xí)冊答案