【題目】已知直線的斜率為,縱截距為.

1)求點(diǎn)(24)關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo);

2)求與直線平行且距離為的直線方程.

【答案】1 ; 2

【解析】

1)設(shè)點(diǎn),則關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo)為,利用點(diǎn)關(guān)于直線對(duì)稱的性質(zhì),以及中垂線定理,列出關(guān)于的式子,結(jié)合的中點(diǎn)在直線上,即可求出;

2)根據(jù)平行直線系方程,由已知直線寫出與它平行的直線的方程為:,再利用兩平行線間的距離公式,求出,即可得出直線方程.

已知直線的斜率為,縱截距為,則方程為:

1)設(shè)點(diǎn)為點(diǎn),則關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo)為

則直線與直線垂直,則,即①,

的中點(diǎn)在直線上,所以②,

聯(lián)立①和②,解得,

所以點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo)為.

2)設(shè)所求的直線為,因?yàn)橹本與直線平行且距離為,

又因?yàn)橹本方程為:,即,

所以可設(shè)直線的方程為:,

,解得-11.

所以直線的方程為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有個(gè)小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個(gè)球,最多抓3個(gè)球,規(guī)定誰(shuí)抓到最后一個(gè)球誰(shuí)贏. 如果甲先抓,那么下列推斷正確的是(

A. =4,則甲有必贏的策略 B. =6,則乙有必贏的策略

C. =9,則甲有必贏的策略 D. =11,則乙有必贏的策略

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個(gè)產(chǎn)品),已知其中有且只有一袋次品(10個(gè)產(chǎn)品均為次品)如果將5袋產(chǎn)品以15編號(hào),第袋取出個(gè)產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號(hào)是2,此時(shí)的重量_________;若次品所在的袋子的編號(hào)是,此時(shí)的重量_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問(wèn)題,為了了解強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測(cè)量得到的聲音強(qiáng)度和聲音能量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中,

1)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程;

2)當(dāng)聲音強(qiáng)度大于60分貝時(shí)屬于噪音,會(huì)產(chǎn)生噪聲污染,城市中某點(diǎn)共受到兩個(gè)聲源的影響,這兩個(gè)聲源的聲音能量分別是,且.已知點(diǎn)的聲音能量等于聲音能量之和.請(qǐng)根據(jù)(1)中的回歸方程,判斷點(diǎn)是否受到噪聲污染的干擾,并說(shuō)明理由.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知六個(gè)直角邊均為1的直角三角形圍成的兩個(gè)正六邊形,則該圖形繞著旋轉(zhuǎn)一周得到的幾何體的體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面ABCD為菱形,,側(cè)面PAD與底面ABCD所成的角為,是等邊三角形,點(diǎn)P到平面ABCD距離為

1)證明:;

2)求二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù)).

1)若函數(shù)存在極值點(diǎn),求的取值范圍;

2)設(shè),若不等式上恒成立,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),若有兩個(gè)相異零點(diǎn),,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自由購(gòu)是一種通過(guò)自助結(jié)算購(gòu)物的形式.某大型超市為調(diào)查顧客自由購(gòu)的使用情況,隨機(jī)抽取了100人,調(diào)查結(jié)果整理如下:

20以下

[20,30

[30,40

[40,50

[50,60

[6070]

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

1)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在[30,50)且未使用自由購(gòu)的概率;

2)從被抽取的年齡在[50,70]使用的自由購(gòu)顧客中,隨機(jī)抽取2人進(jìn)一步了解情況,求這2人年齡都在[5060)的概率;

3)為鼓勵(lì)顧客使用自由購(gòu),該超市擬對(duì)使用自由購(gòu)顧客贈(zèng)送1個(gè)環(huán)保購(gòu)物袋.若某日該超市預(yù)計(jì)有5000人購(gòu)物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購(gòu)物袋?

查看答案和解析>>

同步練習(xí)冊(cè)答案