某省實(shí)驗(yàn)中學(xué)高三共有學(xué)生600人,一次數(shù)學(xué)考試的成績(試卷滿分150分)服從正態(tài)分布N(100,σ2),統(tǒng)計(jì)結(jié)果顯示學(xué)生考試成績在80分到100分之間的人數(shù)約占總?cè)藬?shù)的,則此次考試成績不低于120分的學(xué)生約有   人.
100
∵數(shù)學(xué)考試成績ξ~N(100,σ2),又∵P(ξ≤80)+P(ξ≥120)=1-P(80≤ξ≤100)-P(100≤ξ≤120)=,∴P(ξ≥120)=×=,∴成績不低于120分的學(xué)生約為600×=100(人).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙兩人進(jìn)行乒乓球比賽,各局相互獨(dú)立,約定每局勝者得1分,負(fù)者得0分,如果兩人比賽五局,乙得1分與得2分的概率恰好相等.
求乙在每局中獲勝的概率為多少?
假設(shè)比賽進(jìn)行到有一人比對方多2分或打滿6局時(shí)停止,用表示比賽停止時(shí)已打局?jǐn)?shù),求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從正六邊形的6個(gè)頂點(diǎn)中隨機(jī)選擇4個(gè)頂點(diǎn),則以它們作為頂點(diǎn)的四邊形是矩形的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從裝有3個(gè)紅球、2個(gè)白球的袋中任取3個(gè)球,則所取的3個(gè)球中至少有1個(gè)白球的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若X是離散型隨機(jī)變量,P(X=x1)=,P(X=x2)=,且x1<x2,又已知E(X)=,D(X)=,則x1+x2的值為(  )
A.B.C.3D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,電路由電池A,B,C并聯(lián)組成.電池A,B,C損壞的概率分別是0.3,0.2,0.2,求電路斷電的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

2012年10月11日,中國作家莫言被授予諾貝爾文學(xué)獎(jiǎng),成為有史以來首位獲得諾貝爾文學(xué)獎(jiǎng)的中國籍作家.某學(xué)校組織了4個(gè)學(xué)習(xí)小組.現(xiàn)從中抽出2個(gè)小組進(jìn)行學(xué)習(xí)成果匯報(bào),在這個(gè)試驗(yàn)中,基本事件的個(gè)數(shù)為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在一次數(shù)學(xué)測驗(yàn)后,班級學(xué)委對選答題的選題情況進(jìn)行了統(tǒng)計(jì),如下表:
 
幾何證明選講
坐標(biāo)系與
參數(shù)方程
不等式選講
合計(jì)
男同學(xué)(人數(shù))
12
4
6
22
女同學(xué)(人數(shù))
0
8
12
20
合計(jì)
12
12
18
42
(1)在統(tǒng)計(jì)結(jié)果中,如果把幾何證明選講和坐標(biāo)系與參數(shù)方程稱為幾何類,把不等式選講稱為代數(shù)類,我們可以得到如下2×2列聯(lián)表:
 
幾何類
代數(shù)類
總計(jì)
男同學(xué)(人數(shù))
16
6
22
女同學(xué)(人數(shù))
8
12
20
總計(jì)
24
18
42
據(jù)此統(tǒng)計(jì)你是否認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān)?若有關(guān),你有多大的把握?
(2)在原統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知這名班級學(xué)委和兩名數(shù)學(xué)科代表都在選做“不等式選講”的同學(xué)中.
①求在這名班級學(xué)委被選中的條件下,兩名數(shù)學(xué)科代表也被選中的概率;
②記抽到數(shù)學(xué)科代表的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表僅供參考:
P(K2k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
參考公式:K2 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從裝有只紅球和只黒球的口袋內(nèi)任取個(gè)球,那么互斥而不對立的兩個(gè)事件是(  )
A.至少有一個(gè)黒球與都是黒球B.至少有一個(gè)黒球與都是紅球
C.至少有一個(gè)黒球與至少有只紅球D.恰有只黒球與恰有只黒球

查看答案和解析>>

同步練習(xí)冊答案