已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn,(n∈N*,N≥3).
(1)求證:a3=
(n+1)n(n-1)(n-2)24
;
(2)若a1+a2+…+an-1=29-n,求正整數(shù)n的值.
分析:(1)利用組合數(shù)先表示出a3,再利用組合和的性質(zhì)化簡組合數(shù)的和,得到證明.
(2)先求出an,再通過給二項式中的x分別賦值0,1得到a0=n和a0+a1+a2+…+an-1+an=2n+1-2,進(jìn)一步求出a1+a2+…+an-1,
代入已知等式,解方程求出n的值.
解答:證明:(1)a3為x3的系數(shù),
所以a3=
C
3
3
+
C
3
4
+
C
3
5
+…+
C
3
n

=
C
4
4
+
C
3
4
+
C
3
5
+…+
C
3
n

=
C
4
n+1

=
(n+1)n(n-1)(n-2)
24

所以a3=
(n+1)n(n-1)(n-2)
24

解:(2)只有(1+x)n的展開式中才有含xn的項,它的系數(shù)為1,
令x=0得a0=n,
令x=1得a0+a1+a2+…+an-1+an=2+22+23++2n=2n+1-2,
∴a1+a2+…+an-1=2n+1-2-1-n
∴2n+1-3-n=29-n
得n=4;
點評:本題考查利用二項展開式的通項公式求特殊項的系數(shù);考查組合數(shù)的性質(zhì);考查利用賦值法求二項展開式的系數(shù)和,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山東省德州一中2011-2012學(xué)年高一模塊檢測數(shù)學(xué)試題 題型:013

已知函數(shù)f(x)是R上的增函數(shù),A(0,-3),B(3,1)是其圖象上的兩點,那么不等式-3<f(x+1)<1的解集的補(bǔ)集是

[  ]
A.

(-1,2)

B.

(1,4)

C.

(―∞,-1)∪[4,+∞)

D.

(―∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省普通高中2012屆高三高考適應(yīng)性測試數(shù)學(xué)理科試題 題型:013

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0]時,f(x)=e-x-ex2+a,則函數(shù)f(x)在x=1處的切線方程為

[  ]

A.x+y=0

B.ex-y+1-e=0

C.ex+y-1-e=0

D.x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域為數(shù)學(xué)公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)φ(x)=5x2+5x+1(x∈R),函數(shù)y=f(x)的圖象與φ(x)的圖象關(guān)于點(0,數(shù)學(xué)公式)中心對稱.
(1)求函數(shù)y=f(x)的解析式;
(2)如果g1(x)=f(x),gn(x)=f[gn-1(x)](n∈N,n≥2),試求出使g2(x)<0成立的x取值范圍;
(3)是否存在區(qū)間E,使E∩{x|f(x)<0}=∅對于區(qū)間內(nèi)的任意實數(shù)x,只要n∈N且n≥2時,都有g(shù)n(x)<0恒成立?

查看答案和解析>>

同步練習(xí)冊答案