【題目】如圖,在四棱錐ABCD中,和都是等邊三角形,平面PAD平面ABCD,且,.
(1)求證:CDPA;
(2)E,F分別是棱PA,AD上的點,當平面BEF//平面PCD時,求四棱錐的體積.
【答案】(1)證明見解析(2)
【解析】
(1)由已知即可證得:,且,再利用是等邊三角形即可證得:,再利用面面垂直的性質(zhì)即可證得:平面,問題得證.
(2)利用平面BEF//平面PCD可得:BF//CD,結(jié)合可得,即可求得:DF=,從而求得,利用(1)可得四棱錐的高,再利用錐體體積公式計算即可.
證明:(1)因為是等邊三角形,所以
又,,
所以,所以,且.
又是等邊三角形,所以,
所以.
又平面平面,平面平面,平面
所以平面.
所以CDPA.
(2)因為平面BEF//平面PCD,
所以BF//CD,EF//PD,又
所以.
又在直角三角形ABD中,DF=,
所以.
所以.
由(1)知平面,故四棱錐的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記為數(shù)列的前項和.“任意正整數(shù),均有”是“為遞增數(shù)列”的
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù)(其中)
(1)求實數(shù)m的值;
(2)已知關(guān)于x的方程在區(qū)間上有實數(shù)解,求實數(shù)k的取值范圍;
(3)當時,的值域是,求實數(shù)n與a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量,設(shè)函數(shù)(為常數(shù)且滿足),若函數(shù)圖象的一條對稱軸是直線.
(1)求的值;
(2)求函數(shù)在上的最大值和最小值:
(3)證明:直線與函數(shù)的圖象不相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列與滿足.
(1)若,求數(shù)列的通項公式;
(2)若且數(shù)列為公比不為1的等比數(shù)列,求q的值,使數(shù)列也是等比數(shù)列;
(3)若且,數(shù)列有最大值M與最小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,且,且,函數(shù).
(1)設(shè),,若是奇函數(shù),求的值;
(2)設(shè),,判斷函數(shù)在上的單調(diào)性并加以證明;
(3)設(shè),,,函數(shù)的圖象是否關(guān)于某垂直于軸的直線對稱?如果是,求出該對稱軸,如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是公差為的等差數(shù)列,是公比為的等比數(shù)列.
(1)若,是否存在,有?請說明理由;
(2)若(、為常數(shù),且)對任意,有,試求出、滿足的充要條件;
(3)若,,試確定所有,使數(shù)列中存在某個連續(xù)項的和是數(shù)列中的一項,請證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知曲線上的動點到點的距離與到直線的距離相等.
(1)求曲線的軌跡方程;
(2)過點分別作射線、交曲線于不同的兩點、,且.試探究直線是否過定點?如果是,請求出該定點;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有多年的歷史,對唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史.某陶瓷廠在生產(chǎn)過程中,對仿制的件工藝品測得重量(單位:)數(shù)據(jù)如下表:
分組 | 頻數(shù) | 頻率 |
合計 |
(1)求出頻率分布表中實數(shù),的值;
(2)若從仿制的件工藝品重量范圍在的工藝品中隨機抽選件,求被抽選件工藝品重量均在范圍中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com