【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,S20=17,則S30為(
A.15
B.20
C.25
D.30

【答案】A
【解析】解:在等差數(shù)列中,s10 , s20﹣s10 , s30﹣s20成等差數(shù)列
=x+x2| =3+9=12,
S20=17,
∴2(17﹣12)=12+s30﹣17
∴s30=15
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用定積分的概念和等差數(shù)列的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握定積分的值是一個(gè)常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個(gè)基本步驟:①分割;②近似代替;③求和;④取極限;在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為

(1)求,的值;

(2)若,求函數(shù)的單調(diào)區(qū)間;

(3)設(shè)函數(shù),且在區(qū)間內(nèi)為減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域D={x|x≠0},且滿足對(duì)于任意x1,x2D.f(x1·x2)=f(x1)+f(x2).

(1)f(1)的值;

(2)判斷f(x)的奇偶性并證明;

(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為一臺(tái)冷軋機(jī)的示意圖,冷軋機(jī)由若干對(duì)軋輥組成,帶鋼從一端輸入,經(jīng)過各對(duì)軋輥逐步減薄后輸出.(軋鋼過程中,鋼帶寬度不變,且不考慮損耗)

一對(duì)對(duì)軋輥的減薄率.

(1)輸入鋼帶的厚度為,輸出鋼帶的厚度為,若每對(duì)軋輥的減薄率不超過,問冷軋機(jī)至少需要安裝幾對(duì)軋輥?

(2)已知一臺(tái)冷軋機(jī)共有4對(duì)減薄率為的軋輥,所有軋輥周長均為,若第對(duì)軋輥有缺陷,每滾動(dòng)一周在剛帶上壓出一個(gè)疵點(diǎn),在冷軋機(jī)輸出的剛帶上,疵點(diǎn)的間距為,易知,為了便于檢修,請(qǐng)計(jì)算,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(e=2.71828…),g(x)為其反函數(shù).
(1)求函數(shù)F(x)=g(x)﹣ax的單調(diào)區(qū)間;
(2)設(shè)直線l與f(x),g(x)均相切,切點(diǎn)分別為(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求證:x1>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列{an}中,a2=3,a5=81,bn=1+2log3an
(1)求數(shù)列{bn}的前n項(xiàng)的和;
(2)已知數(shù)列 的前項(xiàng)的和為Sn , 證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某政府機(jī)關(guān)在編人員100人,其中副處級(jí)以上干部10人,一般干部70人,工人20人.上級(jí)機(jī)關(guān)為了了解職工對(duì)政府機(jī)構(gòu)改革的意見,要從中抽取一個(gè)容量為20的樣本,試確定用何種方法抽取,請(qǐng)具體實(shí)施操作.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等比數(shù)列的前項(xiàng)和,,若數(shù)列也是等比數(shù)列,則等于( )

A. 2n B. 3n C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如下該種產(chǎn)品日需求量的頻率分布直方圖.

⑴求圖中a的值,并估計(jì)日需求量的眾數(shù);

⑵某日,經(jīng)銷商購進(jìn)130件該種產(chǎn)品,根據(jù)近期市場(chǎng)行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元。設(shè)當(dāng)天需求量為件(),純利潤為S元.

①將S表示為的函數(shù);②據(jù)頻率分布直方圖估計(jì)當(dāng)天純利潤S不少于3400元的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案