已知集合A={x|x<4},B={x|1<x<a},U=R,若∁UA?∁UB,求a的取值范圍.
考點:集合的包含關(guān)系判斷及應(yīng)用
專題:計算題,集合
分析:化簡求,∁UA=[4,+∞);討論B是否是空集.
解答: 解:由題意,∁UA=[4,+∞);
若a≤1,則B=∅,則∁UA?∁UB一定成立,
若a>1,則∁UB=(-∞,1]∪[a,+∞),
則由∁UA?∁UB可得,
a≤4,
綜上所述,a≤4.
點評:本題考查了集合的運算及包含關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=ln|x|與y=-
-x2+1
在同一平面直角坐標系內(nèi)的大致圖象為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

t為何值時,函數(shù)f( x)=-3x2+2x-t+1的圖象與x軸不相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=2cos2x+5sinx-4(
π
6
≤x≤
π
3
)的最大值和最小值,并寫出取最值時x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2+px+q滿足f(-2+x)=f(-2-x),其圖象經(jīng)過點(-4,0),求二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項之和為Sn,數(shù)列{an}由如下方式給定:
(k-1)k
2
<n≤
k(k+1)
2
(k∈N*)時,an=(-1)n-1k,定義集合M={n|an是Sn的整數(shù)倍,n∈N*且1≤n≤10},則M中所有元素之和為(  )
A、21B、22C、44D、45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2x,若數(shù)列3,f(x1),f(x2),…,f(xm),3m+6(m∈N*)成等差數(shù)列.
(Ⅰ)求數(shù)列{f(xn)}(1≤n≤m,m,n∈N*)的通項公式;
(Ⅱ)求數(shù)列{xn}(1≤n≤m,m,n∈N*)的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面有四個命題:
(1)函數(shù)y=sin(
2
3
x+
π
2
)
是偶函數(shù);
(2)函數(shù)f(x)=|cos2x|的最小正周期是π;
(3)函數(shù)f(x)=sin(x+
π
4
)
[-
π
2
,
π
2
]
上是增函數(shù);
(4)函數(shù)f(x)=sin2x-cos2x的一條對稱軸是x=
8

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A={x|x(x-3)≥0},函數(shù)y=ln(x-1)的定義域為集合B,則A∩B=( 。
A、(1,3]
B、(1,+∞)
C、(3,+∞)
D、[3,+∞)

查看答案和解析>>

同步練習冊答案