【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.
(1)求證: ;
(2)若為中點(diǎn),求直線與平面所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】試題分析:(1)由平面平面,得到,進(jìn)而證得平面,即可利用面面垂直的判定定理,作出證明;(2)建立如圖所示的空間直角坐標(biāo)系,設(shè)直線與平面所成的角,利用線面角的計(jì)算公式,即可求解直線與平面所成角的正弦值.
試題解析:(1)平面平面,平面平面平面平面,又平面.
(2)過(guò)點(diǎn)在平面內(nèi)作,由(1)知平面平面.
以為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸, 軸, 軸的正方向建立空間直角坐標(biāo)系.
依題意,得,
則,設(shè)平面的法向量,
則,即,取,得平面的法向量,設(shè)直線與平面的所成角為,則,
即直線與平面的所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù) 的圖象在點(diǎn) 處的切線的傾斜角為 ,對(duì)于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù), 求的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列三個(gè)集合:
①{x|y=x2+1};
②{y|y=x2+1};
③{(x,y)|y=x2+1}.
(1)它們是不是相同的集合?
(2)它們各自的含義是什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長(zhǎng)為2的正方形.
(1)求橢圓的方程;
(2)設(shè)是橢圓上一點(diǎn),為橢圓長(zhǎng)軸上一點(diǎn),求的最大值與最小值;
(3)設(shè)是橢圓外的動(dòng)點(diǎn),滿足,點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)在線段上,并且滿足,,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a- (a∈R).
(1) 判斷函數(shù)f(x)的單調(diào)性并給出證明;
(2) 若存在實(shí)數(shù)a使函數(shù)f(x)是奇函數(shù),求a;
(3)對(duì)于(2)中的a,若f(x)≥,當(dāng)x∈[2,3]時(shí)恒成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為上的偶函數(shù),當(dāng)時(shí), .對(duì)于結(jié)論
(1)當(dāng)時(shí), ;(2)函數(shù)的零點(diǎn)個(gè)數(shù)可以為4,5,7;
(3)若,關(guān)于的方程有5個(gè)不同的實(shí)根,則;
(4)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是.
說(shuō)法正確的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測(cè)可知,進(jìn)入21世紀(jì)以來(lái),該產(chǎn)品的產(chǎn)量平穩(wěn)增長(zhǎng).記2009年為第1年,且前4年中,第x年與年產(chǎn)量f(x) 萬(wàn)件之間的關(guān)系如下表所示:
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
若f(x)近似符合以下三種函數(shù)模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=logx+a.
(1)找出你認(rèn)為最適合的函數(shù)模型,并說(shuō)明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;
(2)因遭受某國(guó)對(duì)該產(chǎn)品進(jìn)行反傾銷的影響,2015年的年產(chǎn)量比預(yù)計(jì)減少30%,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為定義在R上的奇函數(shù),當(dāng)時(shí),為二次函數(shù),且滿足,在上的兩個(gè)零點(diǎn)為和.
(1)求函數(shù)在R上的解析式;
(2)作出的圖象,并根據(jù)圖象討論關(guān)于的方程根的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com