A. | n | B. | $\frac{1}{n}$ | C. | -n | D. | -$\frac{1}{n}$ |
分析 由已知數(shù)列遞推式可得Sn+1-Sn=Sn•Sn+1,即$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}=-1$,由此可知,數(shù)列{$\frac{1}{{S}_{n}}$}是以-1為首項,以-1為公差的等差數(shù)列,求出等差數(shù)列的通項公式得答案.
解答 解:由an+1=Sn•Sn+1,得Sn+1-Sn=Sn•Sn+1,
∴$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}=-1$,又$\frac{1}{{S}_{1}}=\frac{1}{{a}_{1}}=-1$,
∴數(shù)列{$\frac{1}{{S}_{n}}$}是以-1為首項,以-1為公差的等差數(shù)列,
則$\frac{1}{{S}_{n}}=-1+(n-1)×(-1)=-n$,
∴${S}_{n}=-\frac{1}{n}$.
故選:D.
點評 本題考查數(shù)列遞推式,考查等差關(guān)系的確定,訓(xùn)練了等差數(shù)列通項公式的求法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+x3 | B. | -x2+x3 | C. | x2-x3 | D. | -x2-x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(0)>f(1) | B. | f(-1)<f(-3) | C. | f(-1)<f(1) | D. | f(-3)>f(-5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com