已知函數(shù)f(x)=sin(
π
2
+x)cos(
π
2
-x)+cosxcos(π-x)
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[-
π
4
π
4
]時(shí),求函數(shù)f(x)的最大值和最小值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)根據(jù)誘導(dǎo)公式、兩角和的余弦公式化簡函數(shù)解析式,再由周期公式求出函數(shù)f(x)的最小正周期;
(2)由x∈[-
π
4
,
π
4
]得2x∈[-
π
2
,
π
2
],根據(jù)余弦函數(shù)的性質(zhì)求出cos2x的范圍,再求出函數(shù)的值域,即可求函數(shù)的最值.
解答: 解:(1)由題意得,f(x)=sin(
π
2
+x)cos(
π
2
-x)+cosxcos(π-x)
=sinxcosx-cosxcosx=-cos2x,
函數(shù)f(x)的最小正周期T=
2
=π;
(2)由x∈[-
π
4
π
4
]得,2x∈[-
π
2
,
π
2
],
所以0≤cos2x≤1,即-1≤-cos2x≤0,
則函數(shù)的最大值是0,最小值是-1.
點(diǎn)評(píng):本題考查了誘導(dǎo)公式、兩角和的余弦公式,以及余弦函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+4a=(a+4)x,a∈R},B={x|x2+4=5x}.
(1)若2∈A,求實(shí)數(shù)a的值;
(2)若A=B,求實(shí)數(shù)a的值;
(3)若A∩B=A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=2x+
1
2x
-1的值域并判斷f(x)在(-∞,0)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)
6
1
4
-
33
3
8
+
30.125

(2)(lg5)2+lg2•lg50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m=1”是“直線x+m2y=0與直線x-y=1垂直”的( 。
A、充要條件
B、充分而不必要條件
C、必要而不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

因?yàn)閨
b
2a
|>
1
2
,所以-
b
2a
的取值范圍為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-x2,g(x)=x,且定義運(yùn)算a&b=
a,(a<b)
b,(a≥b)
,則函數(shù)f(x)&g(x)的最大值為(  )
A、2B、1C、-2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
x+1

(1)判斷函數(shù)f(x)的單調(diào)性;
(2)求函數(shù)f(x)在[3,5]上的值域;
(3)判斷函數(shù)奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0≤a≤1,若滿足不等式|x-a|<b的一切實(shí)數(shù)x也滿足不等式|x-a2|<
13
2
,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案