7.已知F1,F(xiàn)2分別是橢圓的左、右焦點,現(xiàn)以F2為圓心作一個圓恰好經(jīng)過橢圓中心并且交橢圓于點M、N,若過F1的直線MF1是圓F2的切線,則橢圓的離心率為$\sqrt{3}$-1.

分析 如圖所示,由題意可得:MF1⊥MF2,|MF2|=c,|MF1|=2a-c,|F1F2|=2c,利用勾股定理可得c2+(2a-c)2=4c2,即可得出.

解答 解:如圖所示,
由題意可得:MF1⊥MF2,
|MF2|=c,|MF1|=2a-c,|F1F2|=2c,
∴c2+(2a-c)2=4c2
化為c2+2ac-2a2=0,即e2+2e-2=0,e∈(0,1).
解得e=$\sqrt{3}$-1.
故答案為:$\sqrt{3}-1$.

點評 本題考查了橢圓與圓的標準方程及其性質、勾股定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=6x2+x-1.
(Ⅰ)求f(x)的零點;
(Ⅱ)若α為銳角,且sinα是f(x)的零點.
(。┣$\frac{{tan({π+α})•cos({-α})}}{{cos({\frac{π}{2}-α})•sin({π-α})}}$的值;
(ⅱ)求$sin({α+\frac{π}{6}})$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.命題“若ab=0,則a=0或b=0”的否定為若ab=0,則a≠0且b≠0”,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1、F2,短軸的一個端點為P,直線l:x+2y=0與橢圓E的一個交點為A,若|AF1|+|AF2|=10,點P到直線l的距離不大于$\frac{2\sqrt{5}}{5}$,則橢圓E的離心率的取值范圍是( 。
A.(0,$\frac{2\sqrt{6}}{5}$]B.[$\frac{\sqrt{3}}{2}$,1)C.[$\frac{2\sqrt{6}}{5}$,1)D.(0,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知OA為球O的半徑,垂直于OA的平面截球面得到圓M(M為截面與OA的交點).若圓M的面積為2π,OM=$\sqrt{2}$,則球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)$y=\root{3}{x}-\frac{1}{x^2}$ 的零點是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知a>0,b>0,且ab=1,則函數(shù)f(x)=ax與函數(shù)g(x)=-logbx的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.過三棱錐A-BCD的棱AB,BC,CD的中點M,N,P作平面MNP,三棱錐的六條棱中與平面MNP平行的是AC,BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知數(shù)列{an}的前n項和為Sn,${a_n}={({-1})^{n-1}}(4n-3)$,則S11的值等于( 。
A.21B.-21C.41D.61

查看答案和解析>>

同步練習冊答案