已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的
3
倍,F(xiàn)1,F(xiàn)2是它的左,右焦點(diǎn).
(1)若P∈C,且
PF1
PF2
=0,|PF1|•|PF2|=4,求F1,F(xiàn)2的坐標(biāo);
(2)在(1)的條件下,過(guò)動(dòng)點(diǎn)Q作以F2為圓心、以1為半徑的圓的切線QM(M是切點(diǎn)),且使|QF1|=
2
|QM
|,求動(dòng)點(diǎn)Q的軌跡方程.
考點(diǎn):軌跡方程
專題:圓錐曲線中的最值與范圍問題
分析:(1)依題意知a=
3
b
,(|PF1|+|PF2|)2=8b2+8=4a2,由此能求出F1(-2,0),F(xiàn)2(2,0).
(2)由已知|QF2|=
2
|QM|
,|QM|2=|QF2|2-1,|QF1|2=2(|QF2|2-1),設(shè)Q(x,y),由此能求出動(dòng)點(diǎn)Q的軌跡方程.
解答: 解:(1)依題意知a=
3
b
,①
PF1
PF2
=0,∴PF1⊥PF2,
|PF1|2+|PF2|2=(2c)2=4(a2-b2)=8b2,
又P∈C,由橢圓定義得|PF1|+|PF2|=2a,
(|PF1|+|PF2|)2=8b2+8=4a2,②
由①②得a2=6,b2=2,∴c=2,
∴F1(-2,0),F(xiàn)2(2,0).
(2)由已知|QF2|=
2
|QM|
,
|QF1|2=2|QM|2,
∵QM是圓F2的切線,
∴|QM|2=|QF2|2-1,
∴|QF1|2=2(|QF2|2-1),
設(shè)Q(x,y),則(x+2)2+y2=2[(x-2)2+y2-1],
即(x-6)2+y2=34,
綜上所述,所求動(dòng)點(diǎn)Q的軌跡方程為:(x-6)2+y2=34.
點(diǎn)評(píng):本題考查橢圓的焦點(diǎn)坐標(biāo)的求法,考查動(dòng)點(diǎn)的軌跡方程的求法,解題時(shí)要認(rèn)真審題,注意函數(shù)與方程思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x-4≤0},B={x|x=
3
2k-1
,x∈Z,k∈Z},則A∩B=(  )
A、{-1,1}
B、{-1,1,3}
C、{-3,-1,1}
D、{-3,-1,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
的夾角為120°,|
a
|=2,|
b
|=3,記|
m
=3
a
-2
b
n
=2
a
+k
b

(1)若
m
n
,求實(shí)數(shù)k的值.
(2)是否存在實(shí)數(shù)k,使得
m
n
?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象在區(qū)間[a,b]上是連續(xù)不斷的,且滿足f(a)•f(b)<0(a,b∈R,a<b),則函數(shù)f(x)在(a,b)內(nèi)( 。
A、無(wú)零點(diǎn)
B、有且只有一個(gè)零點(diǎn)
C、至少有一個(gè)零點(diǎn)
D、無(wú)法確定有無(wú)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為4的正方形ABCD中,AC與BD相交于O.減去△AOB,將剩下部分沿OC、OD折疊,使OA、OB重合,則以A(B),C,D,O為頂點(diǎn)的四面體的體積為( 。
A、
8
2
3
B、
4
2
3
C、
2
2
3
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+xsinx+cosx,設(shè)f′(x)表示f(x)的導(dǎo)函數(shù).
(1)求f′(
π
2
)的值;
(2)若曲線y=f(x)在點(diǎn)(a,f(a))處與直線y=b相切,求a與b的值;
(3)若曲線y=f(x)與直線y=b有兩個(gè)不同交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高級(jí)中學(xué)高一特長(zhǎng)班有100名學(xué)生,其中學(xué)繪畫的學(xué)生有67人,學(xué)音樂的學(xué)生有45人,而學(xué)體育的學(xué)生既不能學(xué)繪畫,也不能學(xué)音樂,人數(shù)是21人,那么同時(shí)學(xué)繪畫和音樂的學(xué)生有
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-2x](a>0且a≠1),求g(x)在(2,3]上值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a4=2,a5=5,則數(shù)列{lgan}的前8項(xiàng)和等于(  )
A、6B、5C、4D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案