正方體ABCD-A1B1C1D1的 棱長(zhǎng)為a,在正方體內(nèi)隨機(jī)取一點(diǎn)M,則點(diǎn)M落在三棱錐B1-A1BC1內(nèi)的概率為
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:由題意,本題是幾何概型,以體積為測(cè)度,求出三棱錐B1-A1BC1的體積、正方體ABCD-A1B1C1D1的體積,即可求得概率.
解答: 解:由題意,本題是幾何概型,以體積為測(cè)度.
∵正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,
∴三棱錐B1-A1BC1的體積
1
3
1
2
a•a•a
=
1
6
a3
,正方體ABCD-A1B1C1D1的體積為a3,
∴在正方體內(nèi)隨機(jī)取一點(diǎn)M,則點(diǎn)M落在三棱錐B1-A1BC1內(nèi)的概率為
1
6
a3
a3
=
1
6

故答案為:
1
6
點(diǎn)評(píng):本題考查幾何概型,以體積為測(cè)度,考查了正方體的性質(zhì)、錐體體積公式和幾何概型及其應(yīng)用等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知球O的面上有四點(diǎn)A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,則球O的體積與表面積的比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0)的準(zhǔn)線為L(zhǎng),焦點(diǎn)為F,⊙M的圓心在y軸的正半軸上,且與x軸相切,過原點(diǎn)作傾斜角為
π
6
的直線n,交L于點(diǎn)A,交⊙M于另一點(diǎn)B,且|AO|=|OB|=2
(Ⅰ)求⊙M和拋物線C的方程;
(Ⅱ)過L上的動(dòng)點(diǎn)Q作⊙M的切線,切點(diǎn)為S、T,求當(dāng)坐標(biāo)原點(diǎn)O到直線ST的距離取得最大值時(shí),四邊形QSMT的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(-4,0)作直線l與圓x2+y2+2x-4y-20=0交于A、B兩點(diǎn),如果|AB|=8,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
6
)-cos(x+
π
3
),g(x)=2sin2
x
2

(Ⅰ)若α是第一象限角,且f(a)=
3
3
5
,求g(a)的值;
(Ⅱ)求函數(shù)f(x)+g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長(zhǎng)為2的正方形ABCD內(nèi)任取一點(diǎn)P,則使點(diǎn)P到四個(gè)頂點(diǎn)的距離至少有一個(gè)小于1的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2|x|+1,x≤2
-
1
2
x+6,x>2
,若a,b,c互不相等,且滿足f(a)=f(b)=f(c),則a+b+c的取值范圍是( 。
A、(1,10)
B、(5,6)
C、(2,8)
D、(0,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b為[0,2]上的兩個(gè)隨機(jī)數(shù),則滿足2a-b≤0的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(a,0)(a≠0),圓C的圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點(diǎn)P(3,-2).
(Ⅰ)求圓C的方程;
(Ⅱ)若動(dòng)點(diǎn)M滿足|MA|=2|MO|,求點(diǎn)M的軌跡方程;
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù)a,使得|CM|的取值范圍是[1,9],說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案