【題目】一項(xiàng)針對(duì)某一線(xiàn)城市30~50歲都市中年人的消費(fèi)水平進(jìn)行調(diào)查,現(xiàn)抽查500名(200名女性,300名男性)此城市中年人,最近一年內(nèi)購(gòu)買(mǎi)六類(lèi)高價(jià)商品(電子產(chǎn)品、服裝、手表、運(yùn)動(dòng)與戶(hù)外用品、珠寶首飾、箱包)的金額(萬(wàn)元)的頻數(shù)分布表如下:
女性 | 金額 | |||||
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性 | 金額 | |||||
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)將頻率視為概率,估計(jì)該城市中年人購(gòu)買(mǎi)六類(lèi)高價(jià)商品的金額不低于5000元的概率.
(2)把購(gòu)買(mǎi)六類(lèi)高價(jià)商品的金額不低于5000元的中年人稱(chēng)為“高收入人群”,根據(jù)已知條件完成列聯(lián)表,并據(jù)此判斷能否有95%的把握認(rèn)為“高收入人群”與性別有關(guān)?
高收入人群 | 非高收入人群 | 合計(jì) | |
女性 | 60 | ||
男性 | 180 | ||
合計(jì) | 500 |
參考公式:,其中
參考附表:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)(2)見(jiàn)解析,有95%的把握認(rèn)為“高收入人群”與性別有關(guān).
【解析】
(1)先得到相應(yīng)范圍內(nèi)的頻數(shù),然后利用頻率得到概率;(2)根據(jù)列聯(lián)表內(nèi)已有的數(shù)據(jù),計(jì)算出其他數(shù)據(jù),完成表格,然后計(jì)算出,做出判斷.
解析:(1)該城市中年人購(gòu)買(mǎi)六類(lèi)高價(jià)商品的金額不低于5000元的頻數(shù)為:
,
所以該城市中年人購(gòu)買(mǎi)六類(lèi)高價(jià)商品的金額不低于5000元的概率為:
.
(2)根據(jù)頻數(shù)分布表得:高收入人群中女性有140人,男性有180人,
非高收入人群中女性有60人,男性有120人,
完成列聯(lián)表如下:
高收入人群 | 非高收入人群 | 合計(jì) | |
女 | 140 | 60 | 200 |
男 | 180 | 120 | 300 |
合計(jì) | 320 | 180 | 500 |
根據(jù)列聯(lián)表中的數(shù)據(jù),計(jì)算得
故有95%的把握認(rèn)為“高收入人群”與性別有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn)的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)分別求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線(xiàn)交曲線(xiàn)于,兩點(diǎn),交曲線(xiàn)于,兩點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)在圓上,且在第一象限,過(guò)作的切線(xiàn)交橢圓于兩點(diǎn),問(wèn): 的周長(zhǎng)是否為定值?若是,求出定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)m=0時(shí),求曲線(xiàn)y=f(x)在x=1處的切線(xiàn)方程;
(Ⅱ)若函數(shù)f(x)的圖象在x軸的上方,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿基米德(公元前年—公元前年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸與短半軸的乘積.已知平面直角坐標(biāo)系中,橢圓:的面積為,兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線(xiàn)與交于不同的兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除元后的余額為應(yīng)納稅所得額,依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額元 | 免征額元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率() | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率() |
1 | 不超過(guò)元部分 | 1 | 不超過(guò)元部分 | ||
2 | 超過(guò)元至元的部分 | 2 | 超過(guò)元至元的部分 | ||
3 | 超過(guò)元至元的部分 | 3 | 超過(guò)元至元的部分 | ||
… | … | … | … | … | … |
某稅務(wù)部門(mén)在某公式利用分層抽樣方法抽取2019年3月個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) |
(1)先從收入在及的人群中按分層抽樣抽取人,則收入在及的人群中分別抽取多少人?
(2)在從(1)中抽取的人中選人作為新納稅法知識(shí)宣講員,求兩個(gè)宣講員不全是同一收入人群的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】武漢市政府為了給“世界軍運(yùn)會(huì)”營(yíng)造良好交通環(huán)境,特招聘了一批交通協(xié)管員,這些協(xié)管員的年齡都在之間,按年齡情況對(duì)他們進(jìn)行統(tǒng)計(jì)得到的頻率分布直方圖如下,其中年齡在歲的有10人,歲的有45人.
(1)補(bǔ)全頻率分布直方圖,并估計(jì)協(xié)管員的年齡中位數(shù);
(2)為感謝年長(zhǎng)的協(xié)管員的支持,利用分層抽樣的方法從年齡在的協(xié)管員中抽取5人,并從這5人中再抽取3人,各贈(zèng)送一份禮品,求僅有一人年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與雙曲線(xiàn)有公共的焦點(diǎn),的一條漸近線(xiàn)與以的長(zhǎng)軸為直徑的圓相交于兩點(diǎn),若恰好將線(xiàn)段三等分,則
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com