如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點.
(1)當AP=1,AQ=3時,求PQ的長;
(2)已知AP+AQ=4,當線段AP為何值時,線段PQ取得最小值,并求線段PQ的最小值.
分析:(1)由A的度數(shù)求出cosA的值,利用余弦定理得到PQ2=AP2+AQ2-2AP•AQ•cosA,將AP,AQ及cosA的值代入求出PQ的長即可;
(2)設(shè)AP=x,AQ=y,由AP+AQ=4,得到x+y=4,利用余弦定理得到PQ2=AP2+AQ2-2AP•AQ•cosA,將設(shè)出的AP,AQ代入并利用完全平方公式變形后,把x+y的值代入并利用基本不等式變形,即可求出當且僅當x=y,即AP=BP=2時,PQ取得最小值,最小值是2.
解答:解:(1)∵∠A=60°,AP=1,AQ=3,
∴由余弦定理得PQ2=AP2+AQ2-2AP•AQ•cosA=7,
∴PQ=
7

(2)設(shè)AP=x,AQ=y,由AP+AQ=4,得到x+y=4,
∵∠A=60°,
∴PQ2=AP2+AQ2-2AP•AQ•cosA=x2+y2-xy=(x+y)2-3xy=16-3xy,
xy
x+y
2
=2(x>0,y>0),
∴xy≤4,
∴PQ2=16-3xy≥16-3×4=4,
則當且僅當x=y,即AP=BP=2時,PQ取得最小值,最小值是2.
點評:此題考查了余弦定理,基本不等式的運用,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點.
(1)當AP=1,AQ=3時,求PQ的長;
(2)AP、AQ長度之和為定值4,求線段PQ最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點.
(1)當AP=1,AQ=3時,求PQ的長;
(2)AP、AQ長度之和為定值4,求線段PQ最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:0118 月考題 題型:解答題

如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點。
(1)當AP=1,AQ=3時,求PQ的長;
(2)AP、AQ長度之和為定值4,求線段PQ的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省郴州一中高二(下)段考數(shù)學試卷(解析版) 題型:解答題

如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點.
(1)當AP=1,AQ=3時,求PQ的長;
(2)AP、AQ長度之和為定值4,求線段PQ最小值.

查看答案和解析>>

同步練習冊答案