【題目】已知函數(shù).

(1)若函數(shù)的最小值為,求的值;

(2)證明: .

【答案】(1;(2)證明見解析.

【解析】試題分析:(1)由題意得,的最小值問題,需要借助于導(dǎo)數(shù),對比極值與端點(diǎn)值確定,而由最值也可確定出未知量;(2)借助第一問,將問題轉(zhuǎn)化成最常見的形式:.

試題解析:(1的定義域?yàn)?/span>,且.,則,于是上單調(diào)遞增,故無最小值,不合題意,若,則當(dāng)時(shí), ;當(dāng)時(shí), .上單調(diào)遞減,在上單調(diào)遞增.于是當(dāng)時(shí), 取得最小值.由已知得, 解得.綜上, .

2下面先證當(dāng)時(shí), .因?yàn)?/span>, 所以只要證.由(1)可知, 于是只要證,即只要證, ,則,當(dāng)時(shí), , 所以單調(diào)遞增,所以當(dāng)時(shí), ,即,故當(dāng)時(shí),不等式成立 . 當(dāng)時(shí),由(1)知, 于是有,即,所以, ,又因?yàn)?/span>, 所以,所以

,綜上,不等式

成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),判斷并證明函數(shù)上單調(diào)性。

(2)當(dāng)時(shí),若關(guān)于的方程上有解,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)全集U{2,4,-(a3)2},集合A{2,a2a2},若UA{1},求實(shí)數(shù)a的值. (2)已知A{x|2axa3},B{x|x<1x>5},若AB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過定點(diǎn)

(1)若直線與圓相切,求直線的方程。

(2)若直線與圓相交于兩點(diǎn),且,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察以下5個(gè)等式:

-1=-1

-1+3=2

-1+3-5=-3

-1+3-5+7=4

-1+3-5+7-9=-5

……

根據(jù)以上式子規(guī)律

1寫出第6個(gè)等式,并猜想第n個(gè)等式;n∈N*

2用數(shù)學(xué)歸納法證明上述所猜想的第n個(gè)等式成立n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對數(shù)的底數(shù).

(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線;

(2)若方程f(x)=x3x2+m有3個(gè)不同的根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=.(a>0)

(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;

(2)當(dāng)a>1時(shí),討論f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,直線的兩個(gè)交點(diǎn)間的距離為.

)求橢圓的方程;

)分別過滿足,設(shè)的上半部分分別交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市理論預(yù)測2000年到2004年人口總數(shù)與年份的關(guān)系如下表所示

年份200(年)

0

1

2

3

4

人口數(shù) (十萬)

5

7

8

11

19

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)據(jù)此估計(jì)2005年該城市人口總數(shù).

參考公式: 用最小二乘法求線性回歸方程系數(shù)公式

查看答案和解析>>

同步練習(xí)冊答案