用一些棱長是1cm的小正方體堆放成一個幾何體,其正視圖和俯視圖如圖所示,則這個幾何體的體積最多是(  )
A、6 cm3
B、7 cm3
C、8 cm3
D、9 cm3
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由正視圖和俯視圖可知:這個幾何體的最多是由以下7個正方體組成.
解答: 解:由正視圖和俯視圖可知:這個幾何體的最多是由以下7個正方體組成:左邊是上下并排各2個正方體,中間只有一個正方體,右邊有2個正方體.
因此這個幾何體的體積最多是7cm3
故選:B.
點評:本題考查了三視圖的應(yīng)用,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在空間中,給出下面四個命題:
①過一點有且只有一個平面與已知直線垂直;
②垂直于同一個平面的兩條直線互相平行;
③垂直于同一個平面的兩條直線平行;
④平行于同一個平面的兩條直線平行;
其中正確的命題是
 
(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的框圖:若輸出的S值滿足
1
32
<|S-1|<
1
8
,則自然數(shù)p的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-sin(2x+
π
4
)圖象為C,以下四個結(jié)論中正確的是(寫出所有正確編號)( 。
①圖象C關(guān)于直線x=
8
對稱;
②圖象關(guān)于點(-
8
,0)對稱;
③函數(shù)f(x)在區(qū)間  (-
8
8
) 內(nèi)是增函數(shù); 
④由y=-sin2x的圖象向左平移
π
4
個單位長度可以得到圖象C.
A、①②B、①③
C、①②④D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市對一中學(xué)2010年高考語文和數(shù)學(xué)上線情況進(jìn)行統(tǒng)計,隨機(jī)抽查50名學(xué)生得到如表格進(jìn)行統(tǒng)計:統(tǒng)計人員甲計算數(shù)學(xué)K2的觀測值過程如下:K數(shù)2=
50(39×7-1×3)2
40×10×42×8
≈27.1;類比甲的算法試計算語文K2的觀測值是多少?(精確0.1)
語     文數(shù)     學(xué)
上線不上線上線不上線
總分上線40人355391
總分不上線10人5537
合       計4010428

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6c m的圓柱體毛坯切削得到,則切削掉部分的體積與原來毛坯體積的比值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓柱的底面半徑為1,高為2,則這個圓柱的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是兩條不同的直線,α,β是兩個不同的平面,有下列命題:
①若m?α,n∥α,則m∥n; 
②若m∥α,m∥β,則α∥β; 
③若α⊥β,m⊥β,m?α,則m∥α;
④若m⊥α,m⊥β,則α∥β;
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α-
β
2
)=-
1
9
,sin(
α
2
-β)=
2
3
,0<α<π,0<β<
π
2
,求cos(α+β)的值.

查看答案和解析>>

同步練習(xí)冊答案