18.在等差數(shù)列{an}中,若a3=9,a6=15,則a12等于( 。
A.3B.12C.27D.36

分析 由已知可知a3,a6,a9,a12構(gòu)成等差數(shù)列,求其公差,再由等差數(shù)列的通項(xiàng)公式求得a12

解答 解:在等差數(shù)列{an}中,a3,a6,a9,a12構(gòu)成等差數(shù)列,
設(shè)新數(shù)列構(gòu)成為d,則d=a6-a3=15-9=6,
∴a12=a3+3d=9+3×6=27.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖所示,程序據(jù)圖(算法流程圖)的輸出結(jié)果為( 。
A.$\frac{3}{4}$B.$\frac{1}{6}$C.$\frac{11}{12}$D.$\frac{25}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在區(qū)間[-2,3]上隨機(jī)取一個(gè)數(shù)x,則x∈[-1,1]的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,則z=x+2y的最小值為( 。
A.0B.0.5C.2D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)全集A={1,2,3,4,5},B={2,4,6,8,10},則A∪B=( 。
A.{2,4}B.{1,2,3,4,5,6,8,10}
C.{1,2,3,4,5}D.{2,4,6,8,10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.執(zhí)行如圖的程序框圖,若p=4,則輸出的S=( 。
A.$\frac{7}{8}$B.$\frac{15}{16}$C.$\frac{31}{32}$D.$\frac{63}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,在三棱柱ABC-A1B1C1中,底面ABC為正三角形,側(cè)棱AA1⊥面ABC,若AB=AA1,則直線A1B與AC所成角的余弦值為(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{14}}{2}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.從甲、乙、丙、丁四名同學(xué)中選2人參加普法知識(shí)競(jìng)賽,則甲被選中的概率為(  )
A.$\frac{3}{4}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.i是虛數(shù)單位,復(fù)數(shù)$\frac{5i}{1-2i}$等于(  )
A.2-iB.1-2iC.-2+iD.-1+2i

查看答案和解析>>

同步練習(xí)冊(cè)答案